亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? page44.html

?? wqeqwvrw rkjqhwrjwq jkhrjqwhrwq jkhrwq
?? HTML
字號:
<HTML>
<HEAD>
<TITLE>About Harmonic Numbers</TITLE>
</HEAD>
<BODY bgcolor="#FFFFFF">
 <img src="cover75.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cover75.gif" alt="Logo" align=right>
<b>Data Structures and Algorithms 
with Object-Oriented Design Patterns in C++</b><br>
<A NAME="tex2html2435" HREF="page45.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page45.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/next_motif.gif"></A> <A NAME="tex2html2433" HREF="page35.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page35.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/up_motif.gif"></A> <A NAME="tex2html2427" HREF="page43.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page43.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/previous_motif.gif"></A> <A NAME="tex2html2437" HREF="page9.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page9.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="contents_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/contents_motif.gif"></A> <A NAME="tex2html2438" HREF="page620.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page620.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="index_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/index_motif.gif"></A> <BR><HR>
<H2><A NAME="SECTION003180000000000000000">About Harmonic Numbers</A></H2>
<A NAME="secmodelharmonic">&#160;</A>
<P>
The series  <IMG WIDTH=84 HEIGHT=27 ALIGN=MIDDLE ALT="tex2html_wrap_inline58459" SRC="img95.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img95.gif"  > is
called the <em>harmonic series</em><A NAME=584>&#160;</A>,
and the summation
<P> <IMG WIDTH=289 HEIGHT=43 ALIGN=BOTTOM ALT="displaymath58455" SRC="img96.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img96.gif"  ><P>
gives rise to the series of <em>harmonic numbers</em><A NAME=590>&#160;</A>,
 <IMG WIDTH=20 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline58461" SRC="img97.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img97.gif"  >,  <IMG WIDTH=19 HEIGHT=23 ALIGN=MIDDLE ALT="tex2html_wrap_inline58463" SRC="img98.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img98.gif"  >, ...
As it turns out,
harmonic numbers often creep into the analysis of algorithms.
Therefore, we should understand a little bit about how they behave.
<P>
A remarkable characteristic of harmonic numbers is that,
even though as <I>n</I> gets large and
the difference between consecutive harmonic numbers
gets arbitrarily small ( <IMG WIDTH=111 HEIGHT=27 ALIGN=MIDDLE ALT="tex2html_wrap_inline58467" SRC="img99.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img99.gif"  >),
<em>the series does not converge</em>!
I.e.,  <IMG WIDTH=78 HEIGHT=25 ALIGN=MIDDLE ALT="tex2html_wrap_inline58469" SRC="img100.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img100.gif"  > does not exist.
In other words, the summation  <IMG WIDTH=49 HEIGHT=27 ALIGN=MIDDLE ALT="tex2html_wrap_inline58471" SRC="img101.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img101.gif"  >
goes off to infinity, but just barely.
<P>
Figure&nbsp;<A HREF="page44.html#figeuler" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page44.html#figeuler"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> helps us
to understand the behavior of harmonic numbers.
The smooth curve in this figure is the function <I>y</I>=1/<I>x</I>.
The descending staircase represents
the function  <IMG WIDTH=67 HEIGHT=26 ALIGN=MIDDLE ALT="tex2html_wrap_inline58475" SRC="img102.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img102.gif"  >.<A NAME="tex2html25" HREF="footnode.html#635" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/footnode.html#635"><IMG  ALIGN=BOTTOM ALT="gif" SRC="foot_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/foot_motif.gif"></A>
I.e., for  <IMG WIDTH=102 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58493" SRC="img107.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img107.gif"  >, <I>y</I>=1/<I>i</I>, for  <IMG WIDTH=75 HEIGHT=22 ALIGN=MIDDLE ALT="tex2html_wrap_inline58497" SRC="img108.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img108.gif"  >
<P>
<P><A NAME="685">&#160;</A><A NAME="figeuler">&#160;</A> <IMG WIDTH=575 HEIGHT=322 ALIGN=BOTTOM ALT="figure605" SRC="img109.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img109.gif"  ><BR>
<STRONG>Figure:</STRONG> Computing Harmonic Numbers<BR>
<P>
<P>
Notice that the area under the staircase between 1 and <I>n</I>
for any integer <I>n</I><I>&gt;</I>1 is given by
<P> <IMG WIDTH=500 HEIGHT=67 ALIGN=BOTTOM ALT="eqnarray688" SRC="img110.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img110.gif"  ><P>
Thus, if we can determine the area under the descending staircase
in Figure&nbsp;<A HREF="page44.html#figeuler" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page44.html#figeuler"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>,
we can determine the values of the harmonic numbers.
<P>
As an approximation,
consider the area under the smooth curve <I>y</I>=1/<I>x</I>:
<P> <IMG WIDTH=500 HEIGHT=59 ALIGN=BOTTOM ALT="eqnarray700" SRC="img111.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img111.gif"  ><P>
<P>
Thus,  <IMG WIDTH=37 HEIGHT=21 ALIGN=MIDDLE ALT="tex2html_wrap_inline58533" SRC="img112.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img112.gif"  > is approximately  <IMG WIDTH=26 HEIGHT=11 ALIGN=BOTTOM ALT="tex2html_wrap_inline58535" SRC="img113.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img113.gif"  > for <I>n</I><I>&gt;</I>1.
<P>
If we approximate  <IMG WIDTH=37 HEIGHT=21 ALIGN=MIDDLE ALT="tex2html_wrap_inline58533" SRC="img112.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img112.gif"  > by  <IMG WIDTH=26 HEIGHT=11 ALIGN=BOTTOM ALT="tex2html_wrap_inline58535" SRC="img113.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img113.gif"  >,
the error in this approximation is equal to the area between the two curves.
In fact, the area between these two curves
is such an important quantity that it has its own symbol,
 <IMG WIDTH=8 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline58543" SRC="img114.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img114.gif"  ><A NAME=1138>&#160;</A>,
which is called <em>Euler's constant</em><A NAME=712>&#160;</A>.
The following derivation indicates a way
in which to compute Euler's constant:
<P> <IMG WIDTH=500 HEIGHT=199 ALIGN=BOTTOM ALT="eqnarray713" SRC="img115.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img115.gif"  ><P>
<P>
A program to compute Euler's constant on the basis of this derivation
is given in Program&nbsp;<A HREF="page44.html#proggammac" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page44.html#proggammac"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>.
While this is not necessarily the most accurate
or most speedy way to compute Euler's constant,
it does give the correct result to six significant digits.
<P>
<P><A NAME="744">&#160;</A><A NAME="proggammac">&#160;</A> <IMG WIDTH=575 HEIGHT=218 ALIGN=BOTTOM ALT="program741" SRC="img116.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img116.gif"  ><BR>
<STRONG>Program:</STRONG> Program to compute  <IMG WIDTH=8 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline58543" SRC="img114.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img114.gif"  ><BR>
<P>
<P>
So, with Euler's constant in hand,
we can write down an expression for the  <IMG WIDTH=61 HEIGHT=27 ALIGN=MIDDLE ALT="tex2html_wrap_inline58549" SRC="img117.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img117.gif"  > harmonic number:
<P><A NAME="eqnmodelhn">&#160;</A> <IMG WIDTH=500 HEIGHT=16 ALIGN=BOTTOM ALT="equation748" SRC="img118.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img118.gif"  ><P>
where  <IMG WIDTH=13 HEIGHT=15 ALIGN=MIDDLE ALT="tex2html_wrap_inline58551" SRC="img119.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img119.gif"  > is the error introduced by the fact that
 <IMG WIDTH=8 HEIGHT=16 ALIGN=MIDDLE ALT="tex2html_wrap_inline58543" SRC="img114.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img114.gif"  > is defined as the difference between the curves on the interval
 <IMG WIDTH=52 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58555" SRC="img120.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img120.gif"  >, but we only need the difference on the interval [1,<I>n</I>].
As it turns out, it can be shown (but not here),
that there exists a constant <I>K</I> such that
for large enough values of <I>n</I>,  <IMG WIDTH=75 HEIGHT=24 ALIGN=MIDDLE ALT="tex2html_wrap_inline58563" SRC="img121.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img121.gif"  >.<A NAME="tex2html27" HREF="footnode.html#1140" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/footnode.html#1140"><IMG  ALIGN=BOTTOM ALT="gif" SRC="foot_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/foot_motif.gif"></A>
<P>
Since the error term is less than 1/<I>n</I>,
we can add 1/<I>n</I> to both sides of Equation&nbsp;<A HREF="page44.html#eqnmodelhn" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page44.html#eqnmodelhn"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>
and still have an error which goes to zero as <I>n</I> gets large.
Thus, the usual approximation for the harmonic number is
<P> <IMG WIDTH=300 HEIGHT=15 ALIGN=BOTTOM ALT="displaymath58456" SRC="img123.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img123.gif"  ><P>
<P>
We now return to the question of finding the average running
time of Program&nbsp;<A HREF="page42.html#progfindmaxc" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page42.html#progfindmaxc"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A>,
which finds the largest element of an array.
We can now rewrite Equation&nbsp;<A HREF="page43.html#eqnmodeltn" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page43.html#eqnmodeltn"><IMG  ALIGN=BOTTOM ALT="gif" SRC="cross_ref_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/cross_ref_motif.gif"></A> to give
<P> <IMG WIDTH=500 HEIGHT=63 ALIGN=BOTTOM ALT="eqnarray758" SRC="img124.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/img124.gif"  ><P><HR><A NAME="tex2html2435" HREF="page45.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page45.html"><IMG WIDTH=37 HEIGHT=24 ALIGN=BOTTOM ALT="next" SRC="next_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/next_motif.gif"></A> <A NAME="tex2html2433" HREF="page35.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page35.html"><IMG WIDTH=26 HEIGHT=24 ALIGN=BOTTOM ALT="up" SRC="up_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/up_motif.gif"></A> <A NAME="tex2html2427" HREF="page43.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page43.html"><IMG WIDTH=63 HEIGHT=24 ALIGN=BOTTOM ALT="previous" SRC="previous_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/previous_motif.gif"></A> <A NAME="tex2html2437" HREF="page9.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page9.html"><IMG WIDTH=65 HEIGHT=24 ALIGN=BOTTOM ALT="contents" SRC="contents_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/contents_motif.gif"></A> <A NAME="tex2html2438" HREF="page620.html" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/html/page620.html"><IMG WIDTH=43 HEIGHT=24 ALIGN=BOTTOM ALT="index" SRC="index_motif.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/index_motif.gif"></A> <P><ADDRESS>
<img src="bruno.gif" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/icons/bruno.gif" alt="Bruno" align=right>
<a href="javascript:if(confirm('http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html'" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/copyright.html">Copyright &#169; 1997</a> by <a href="javascript:if(confirm('http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html  \n\nThis file was not retrieved by Teleport Pro, because it is addressed on a domain or path outside the boundaries set for its Starting Address.  \n\nDo you want to open it from the server?'))window.location='http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html'" tppabs="http://dictator.uwaterloo.ca/Bruno.Preiss/books/opus4/signature.html">Bruno R. Preiss, P.Eng.</a>  All rights reserved.

</ADDRESS>
</BODY>
</HTML>

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产成人亚洲综合a∨婷婷 | 青娱乐精品在线视频| 一本久道久久综合中文字幕| 国产欧美一区二区精品忘忧草| 国产伦精品一区二区三区免费| 精品嫩草影院久久| 国产·精品毛片| 国产精品久久久久久妇女6080| 成人黄色片在线观看| 综合av第一页| 91啦中文在线观看| 一区二区三区精密机械公司| 欧美日韩国产综合视频在线观看| 天堂成人国产精品一区| 欧美zozozo| 国产成人av一区二区| 国产精品狼人久久影院观看方式| av一区二区三区| 亚洲444eee在线观看| 精品久久久久久久一区二区蜜臀| 国产91精品在线观看| 亚洲欧美日韩久久| 91精品在线免费| 国产剧情一区二区| 亚洲麻豆国产自偷在线| 日韩写真欧美这视频| 成人福利在线看| 午夜视频在线观看一区| 2020国产精品自拍| 色狠狠色狠狠综合| 黄页网站大全一区二区| 国产精品嫩草99a| 欧美美女bb生活片| 黄页视频在线91| 亚洲国产美女搞黄色| 久久久亚洲精品石原莉奈| 色婷婷精品久久二区二区蜜臂av | 欧美一二三在线| 成人免费毛片app| 午夜激情久久久| 欧美高清在线视频| 欧美福利一区二区| 99久免费精品视频在线观看| 日本在线观看不卡视频| 中文字幕一区二区在线播放| 91精品黄色片免费大全| 91在线国产观看| 美女免费视频一区二区| 亚洲免费在线看| 久久久无码精品亚洲日韩按摩| 欧美日韩中文另类| 成人自拍视频在线观看| 免费欧美日韩国产三级电影| 亚洲精品欧美激情| 日本一区二区三区四区在线视频| 日韩一级高清毛片| 欧美三级电影一区| 91天堂素人约啪| 国产寡妇亲子伦一区二区| 久久精品久久99精品久久| 亚洲一区二区成人在线观看| 国产精品私人影院| 欧美tickling网站挠脚心| 在线观看国产一区二区| 色香蕉成人二区免费| 国产 日韩 欧美大片| 韩国精品在线观看| 麻豆一区二区三| 婷婷丁香激情综合| 性做久久久久久免费观看欧美| 亚洲精品一卡二卡| 亚洲视频精选在线| 亚洲欧洲精品一区二区三区不卡 | 成人午夜视频在线观看| 久久精品99久久久| 日本不卡视频一二三区| 午夜精品久久久久久久99樱桃| 一区二区三区国产豹纹内裤在线| 亚洲精品视频在线观看免费 | 日本黄色一区二区| av电影在线不卡| 91色视频在线| 在线免费精品视频| 欧美性生活大片视频| 欧美在线观看你懂的| 欧美日韩国产首页| 欧美色图在线观看| 9191精品国产综合久久久久久| 91.xcao| 欧美精品国产精品| 日韩欧美国产三级电影视频| 日韩欧美亚洲另类制服综合在线| 欧美成人女星排名| 久久午夜老司机| 国产精品女主播在线观看| 日韩理论片在线| 亚洲国产精品一区二区www在线| 午夜激情综合网| 久久精品国产精品亚洲精品| 国产一二精品视频| 成人av电影在线网| 色综合久久久久综合| 欧美日韩综合色| 欧美变态tickle挠乳网站| 久久久精品国产免大香伊| 国产精品麻豆网站| 亚洲综合男人的天堂| 日本中文一区二区三区| 国产美女娇喘av呻吟久久| av在线不卡网| 欧美剧情片在线观看| 精品99一区二区| 亚洲欧洲成人自拍| 亚洲国产精品一区二区www在线| 精品一区二区综合| 成人美女视频在线观看18| 在线亚洲人成电影网站色www| 宅男在线国产精品| 日本一区二区三区四区 | 欧美日韩大陆一区二区| 欧美成人国产一区二区| 中文字幕亚洲成人| 日韩综合在线视频| 成人久久18免费网站麻豆| 欧美片在线播放| 国产精品色噜噜| 午夜欧美2019年伦理| 成人午夜精品在线| 欧美高清视频不卡网| 国产精品妹子av| 日本一区中文字幕| 99久久精品一区二区| 精品国产成人在线影院| 一区二区三区免费在线观看| 国产成人综合精品三级| 欧美日韩高清不卡| 亚洲男人电影天堂| 国产在线一区二区综合免费视频| 欧美日本在线视频| 国产精品久久久久婷婷二区次| 免费观看91视频大全| 91成人免费在线| 国产精品视频一二三区| 麻豆精品视频在线观看免费| 欧美在线视频全部完| 欧美激情在线一区二区| 精油按摩中文字幕久久| 欧美日韩免费电影| 国产精品久久久久久妇女6080| 国内精品免费**视频| 91精品国产黑色紧身裤美女| 一区二区三区自拍| 成人深夜在线观看| 久久亚洲一区二区三区明星换脸 | 日韩高清国产一区在线| 在线看一区二区| 亚洲色图19p| 99精品在线免费| 国产精品成人免费在线| 国产精品18久久久久久vr| 欧美电影免费观看高清完整版在线 | 成人免费高清在线| 2017欧美狠狠色| 蜜臀久久久99精品久久久久久| 欧美视频一区二区| 一区二区三区免费观看| 色综合天天天天做夜夜夜夜做| 国产精品三级av在线播放| 国产成人免费视| 亚洲国产成人一区二区三区| 国产精品一二三四| 国产农村妇女精品| 国产成人免费视频网站高清观看视频 | 6080午夜不卡| 视频一区二区三区中文字幕| 欧美人妖巨大在线| 午夜精品久久久久久久| 91精品国产色综合久久不卡电影| 视频一区在线视频| 欧美成人bangbros| 激情文学综合插| 久久久久88色偷偷免费| 国产成人精品三级麻豆| 欧美国产禁国产网站cc| 成+人+亚洲+综合天堂| 国产精品国产三级国产aⅴ无密码| www.亚洲国产| 亚洲一区二区三区三| 678五月天丁香亚洲综合网| 久久99在线观看| 久久精品一二三| 91蜜桃视频在线| 亚洲图片有声小说| 日韩女同互慰一区二区| 国产98色在线|日韩| 亚洲欧美日韩国产另类专区| 欧美三级中文字| 激情综合色播激情啊| 日韩一区在线看| 91精品一区二区三区久久久久久|