亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? sshprime.c

?? 遠程登陸工具軟件源碼 用于遠程登陸unix
?? C
?? 第 1 頁 / 共 4 頁
字號:
/*
 * Prime generation.
 */

#include <assert.h>
#include "ssh.h"

/*
 * This prime generation algorithm is pretty much cribbed from
 * OpenSSL. The algorithm is:
 * 
 *  - invent a B-bit random number and ensure the top and bottom
 *    bits are set (so it's definitely B-bit, and it's definitely
 *    odd)
 * 
 *  - see if it's coprime to all primes below 2^16; increment it by
 *    two until it is (this shouldn't take long in general)
 * 
 *  - perform the Miller-Rabin primality test enough times to
 *    ensure the probability of it being composite is 2^-80 or
 *    less
 * 
 *  - go back to square one if any M-R test fails.
 */

/*
 * The Miller-Rabin primality test is an extension to the Fermat
 * test. The Fermat test just checks that a^(p-1) == 1 mod p; this
 * is vulnerable to Carmichael numbers. Miller-Rabin considers how
 * that 1 is derived as well.
 * 
 * Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
 * or a == -1 (mod p).
 * 
 *   Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
 *   since p is prime, either p divides (a+1) or p divides (a-1).
 *   But this is the same as saying that either a is congruent to
 *   -1 mod p or a is congruent to +1 mod p. []
 * 
 *   Comment: This fails when p is not prime. Consider p=mn, so
 *   that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
 *   and n dividing (a-1), without the whole of mn dividing either.
 *   For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
 *   10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
 *   without a having to be congruent to either 1 or -1.
 * 
 * So the Miller-Rabin test, as well as considering a^(p-1),
 * considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
 * go. In other words. we write p-1 as q * 2^k, with k as large as
 * possible (i.e. q must be odd), and we consider the powers
 * 
 *       a^(q*2^0)      a^(q*2^1)          ...  a^(q*2^(k-1))  a^(q*2^k)
 * i.e.  a^((n-1)/2^k)  a^((n-1)/2^(k-1))  ...  a^((n-1)/2)    a^(n-1)
 * 
 * If p is to be prime, the last of these must be 1. Therefore, by
 * the above lemma, the one before it must be either 1 or -1. And
 * _if_ it's 1, then the one before that must be either 1 or -1,
 * and so on ... In other words, we expect to see a trailing chain
 * of 1s preceded by a -1. (If we're unlucky, our trailing chain of
 * 1s will be as long as the list so we'll never get to see what
 * lies before it. This doesn't count as a test failure because it
 * hasn't _proved_ that p is not prime.)
 * 
 * For example, consider a=2 and p=1729. 1729 is a Carmichael
 * number: although it's not prime, it satisfies a^(p-1) == 1 mod p
 * for any a coprime to it. So the Fermat test wouldn't have a
 * problem with it at all, unless we happened to stumble on an a
 * which had a common factor.
 * 
 * So. 1729 - 1 equals 27 * 2^6. So we look at
 * 
 *     2^27 mod 1729 == 645
 *    2^108 mod 1729 == 1065
 *    2^216 mod 1729 == 1
 *    2^432 mod 1729 == 1
 *    2^864 mod 1729 == 1
 *   2^1728 mod 1729 == 1
 * 
 * We do have a trailing string of 1s, so the Fermat test would
 * have been happy. But this trailing string of 1s is preceded by
 * 1065; whereas if 1729 were prime, we'd expect to see it preceded
 * by -1 (i.e. 1728.). Guards! Seize this impostor.
 * 
 * (If we were unlucky, we might have tried a=16 instead of a=2;
 * now 16^27 mod 1729 == 1, so we would have seen a long string of
 * 1s and wouldn't have seen the thing _before_ the 1s. So, just
 * like the Fermat test, for a given p there may well exist values
 * of a which fail to show up its compositeness. So we try several,
 * just like the Fermat test. The difference is that Miller-Rabin
 * is not _in general_ fooled by Carmichael numbers.)
 * 
 * Put simply, then, the Miller-Rabin test requires us to:
 * 
 *  1. write p-1 as q * 2^k, with q odd
 *  2. compute z = (a^q) mod p.
 *  3. report success if z == 1 or z == -1.
 *  4. square z at most k-1 times, and report success if it becomes
 *     -1 at any point.
 *  5. report failure otherwise.
 * 
 * (We expect z to become -1 after at most k-1 squarings, because
 * if it became -1 after k squarings then a^(p-1) would fail to be
 * 1. And we don't need to investigate what happens after we see a
 * -1, because we _know_ that -1 squared is 1 modulo anything at
 * all, so after we've seen a -1 we can be sure of seeing nothing
 * but 1s.)
 */

/*
 * The first few odd primes.
 *
 * import sys
 * def sieve(n):
 *     z = []
 *     list = []
 *     for i in range(n): z.append(1)
 *     for i in range(2,n):
 *         if z[i]:
 *             list.append(i)
 *             for j in range(i,n,i): z[j] = 0
 *     return list
 * list = sieve(65535)
 * for i in list[1:]: sys.stdout.write("%d," % i)
 */
static const unsigned short primes[] = {
    3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
    71, 73, 79, 83, 89, 97, 101,
    103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
    179, 181, 191, 193,
    197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
    277, 281, 283, 293,
    307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
    389, 397, 401, 409,
    419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
    499, 503, 509, 521,
    523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613,
    617, 619, 631, 641,
    643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
    739, 743, 751, 757,
    761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
    859, 863, 877, 881,
    883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
    991, 997, 1009,
    1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
    1091, 1093,
    1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187,
    1193, 1201,
    1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
    1291, 1297,
    1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
    1423, 1427,
    1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489,
    1493, 1499,
    1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
    1601, 1607,
    1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697,
    1699, 1709,
    1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801,
    1811, 1823,
    1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913,
    1931, 1933,
    1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027,
    2029, 2039,
    2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
    2137, 2141,
    2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
    2267, 2269,
    2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351,
    2357, 2371,
    2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447,
    2459, 2467,
    2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591,
    2593, 2609,
    2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689,
    2693, 2699,
    2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789,
    2791, 2797,
    2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897,
    2903, 2909,
    2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019,
    3023, 3037,
    3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
    3167, 3169,
    3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
    3271, 3299,
    3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371,
    3373, 3389,
    3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499,
    3511, 3517,
    3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593,
    3607, 3613,
    3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701,
    3709, 3719,
    3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823,
    3833, 3847,
    3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929,
    3931, 3943,
    3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
    4057, 4073,
    4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159,
    4177, 4201,
    4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273,
    4283, 4289,
    4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421,
    4423, 4441,
    4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523,
    4547, 4549,
    4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651,
    4657, 4663,
    4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787,
    4789, 4793,
    4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919,
    4931, 4933,
    4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
    5011, 5021,
    5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119,
    5147, 5153,
    5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273,
    5279, 5281,
    5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407,
    5413, 5417,
    5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503,
    5507, 5519,
    5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641,
    5647, 5651,
    5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741,
    5743, 5749,
    5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851,
    5857, 5861,
    5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
    6007, 6011,
    6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113,
    6121, 6131,
    6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229,
    6247, 6257,
    6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337,
    6343, 6353,
    6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469,
    6473, 6481,
    6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599,
    6607, 6619,
    6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719,
    6733, 6737,
    6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
    6857, 6863,
    6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
    6971, 6977,
    6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079,
    7103, 7109,
    7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219,
    7229, 7237,
    7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351,
    7369, 7393,
    7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507,
    7517, 7523,
    7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591,
    7603, 7607,
    7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717,
    7723, 7727,
    7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867,
    7873, 7877,
    7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993,
    8009, 8011,
    8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117,
    8123, 8147,
    8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243,
    8263, 8269,
    8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377,
    8387, 8389,
    8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527,
    8537, 8539,
    8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647,
    8663, 8669,
    8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747,
    8753, 8761,
    8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863,
    8867, 8887,
    8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007,
    9011, 9013,
    9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137,
    9151, 9157,
    9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257,
    9277, 9281,
    9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391,
    9397, 9403,
    9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479,
    9491, 9497,
    9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629,
    9631, 9643,
    9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749,
    9767, 9769,
    9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859,
    9871, 9883,
    9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007,
    10009, 10037,
    10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111,
    10133, 10139,
    10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223,
    10243, 10247,
    10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321,
    10331, 10333,
    10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453,
    10457, 10459,
    10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567,
    10589, 10597,
    10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667,
    10687, 10691,
    10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789,
    10799, 10831,
    10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903,
    10909, 10937,
    10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047,
    11057, 11059,
    11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149,
    11159, 11161,
    11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261,
    11273, 11279,
    11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383,
    11393, 11399,
    11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491,
    11497, 11503,
    11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621,
    11633, 11657,
    11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777,
    11779, 11783,
    11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863,
    11867, 11887,
    11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959,
    11969, 11971,
    11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073,
    12097, 12101,
    12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197,
    12203, 12211,
    12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289,
    12301, 12323,
    12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413,
    12421, 12433,
    12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511,
    12517, 12527,
    12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611,
    12613, 12619,
    12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713,
    12721, 12739,
    12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829,
    12841, 12853,
    12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953,
    12959, 12967,
    12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043,
    13049, 13063,
    13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163,

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美系列亚洲系列| 亚洲一区二区三区自拍| 亚洲美女视频在线| 老鸭窝一区二区久久精品| 91在线小视频| 国产女同性恋一区二区| 蜜桃视频在线一区| 欧美三级视频在线观看| 国产精品久久久久一区二区三区共| 奇米精品一区二区三区在线观看| 色综合中文综合网| 国产麻豆成人精品| 欧美日韩一本到| 亚洲卡通欧美制服中文| 成人精品视频一区二区三区尤物| 精品久久99ma| 男人的天堂亚洲一区| 精品视频色一区| 亚洲动漫第一页| 欧美性xxxxxx少妇| 亚洲午夜国产一区99re久久| 爽好久久久欧美精品| 国产99久久久国产精品| 精品国产污污免费网站入口| 日韩国产欧美三级| 正在播放一区二区| 视频一区欧美精品| 欧美美女一区二区三区| 夜夜嗨av一区二区三区 | 久久99精品国产.久久久久久| 欧美视频在线不卡| 午夜精品久久久久久久久| 欧美性受xxxx黑人xyx性爽| 亚洲精品欧美激情| 一本一道久久a久久精品综合蜜臀| 国产免费观看久久| 99re成人在线| 一区二区三区日韩| 欧美日韩国产高清一区二区三区| 亚洲va国产va欧美va观看| 欧美精品久久99久久在免费线| 洋洋成人永久网站入口| 欧美精品精品一区| 激情综合色播激情啊| 久久精品免费在线观看| 成人av在线一区二区三区| 中文字幕字幕中文在线中不卡视频| 色综合久久中文字幕综合网| 亚洲五月六月丁香激情| 欧美一区二区三区四区五区 | 色婷婷av久久久久久久| 亚洲高清不卡在线观看| 欧美大黄免费观看| 粉嫩aⅴ一区二区三区四区| 一区二区三区日韩在线观看| 欧美日韩一级黄| 国产又粗又猛又爽又黄91精品| 国产欧美一区二区精品久导航| 成人av一区二区三区| 亚洲大片免费看| 久久―日本道色综合久久| 91免费视频网| 另类欧美日韩国产在线| 国产精品久久久久久福利一牛影视| 日本精品视频一区二区| 精品一区二区在线视频| 国产精品精品国产色婷婷| 欧美日韩久久一区| 国产电影精品久久禁18| 首页国产欧美久久| 日本一区二区免费在线| 在线播放日韩导航| 成人小视频免费在线观看| 偷拍与自拍一区| 亚洲少妇屁股交4| 久久欧美一区二区| 欧美美女网站色| 成人福利视频在线| 久久激情五月激情| 夜夜操天天操亚洲| 国产精品乱码一区二区三区软件 | 久久99精品久久久久久国产越南| 自拍av一区二区三区| 亚洲精品一区二区三区四区高清 | 欧美日韩中字一区| 国产成人日日夜夜| 久久精品国产99久久6| 亚洲自拍另类综合| 日韩久久一区二区| 久久综合九色综合欧美就去吻| 欧美日韩一区不卡| 色婷婷av一区二区| 99久久久国产精品| 国产91在线看| 国产精品系列在线播放| 久久国产尿小便嘘嘘尿| 日韩二区三区四区| 亚洲国产另类av| 亚洲国产欧美在线| 一区二区三区不卡在线观看 | 久久99久久99| 蜜臀精品久久久久久蜜臀| 丝袜a∨在线一区二区三区不卡| 亚洲精品少妇30p| 亚洲免费观看高清| 最近中文字幕一区二区三区| 中文字幕在线免费不卡| 国产精品你懂的| 欧美国产日本视频| 中文字幕不卡一区| 国产精品久久网站| 亚洲欧美日韩国产成人精品影院 | 日韩精品一区二区三区视频播放| 欧美丰满少妇xxxxx高潮对白| 欧美日韩一区 二区 三区 久久精品| 在线视频国产一区| 欧美日韩精品三区| 欧美一级午夜免费电影| 日韩午夜av一区| 精品奇米国产一区二区三区| 精品欧美一区二区三区精品久久| 精品国产免费久久| 国产欧美一区二区精品性| 精品午夜一区二区三区在线观看| 蜜桃视频一区二区三区在线观看| 亚洲精品国产精品乱码不99| 国产精品麻豆99久久久久久| 中文字幕中文字幕中文字幕亚洲无线| 国产精品国产a级| 亚洲四区在线观看| 丝袜美腿一区二区三区| 久久成人麻豆午夜电影| 成人精品一区二区三区四区 | 色综合久久久久| 91福利在线观看| 欧美日韩视频在线观看一区二区三区 | 国产日产精品1区| 免费看日韩精品| 黑人巨大精品欧美黑白配亚洲| 国产电影一区在线| 在线欧美小视频| 精品久久久久久久久久久院品网| 国产香蕉久久精品综合网| 国产精品久久久久aaaa樱花| 亚洲sss视频在线视频| 国产一区二区三区四| 一本大道久久a久久精品综合| 欧美精品久久天天躁| 国产亚洲精品免费| 亚洲一区二区三区中文字幕在线| 久久99精品久久久久久动态图| 成人av动漫网站| 3751色影院一区二区三区| 国产婷婷色一区二区三区四区| 综合久久一区二区三区| 捆绑调教美女网站视频一区| 91网址在线看| 精品91自产拍在线观看一区| 亚洲美女视频在线| 国产精华液一区二区三区| 欧美日韩极品在线观看一区| 欧美经典一区二区| 蜜臀国产一区二区三区在线播放| a美女胸又www黄视频久久| 欧美电影免费观看完整版| 亚洲精品国久久99热| 国产精品18久久久久久vr| 6080国产精品一区二区| 中文字幕第一区第二区| 看电视剧不卡顿的网站| 在线观看视频一区二区欧美日韩| 国产欧美精品日韩区二区麻豆天美| 日日欢夜夜爽一区| 色婷婷亚洲精品| 国产精品网站在线观看| 久久99久久99小草精品免视看| 欧美日韩免费观看一区二区三区 | 成人污污视频在线观看| 日韩一区二区三免费高清| 亚洲高清三级视频| 色婷婷综合久久久中文字幕| 中文字幕第一页久久| 国产成人综合网站| 26uuu精品一区二区| 日本网站在线观看一区二区三区| 色国产综合视频| 一区二区三区中文在线| 91丨国产丨九色丨pron| 国产精品久久午夜| www.欧美亚洲| 国产精品国产自产拍在线| 国产精品亚洲午夜一区二区三区| 精品日韩一区二区三区免费视频| 亚洲h在线观看| 欧美一区二区在线视频| 日日夜夜一区二区| 在线不卡一区二区| 日本v片在线高清不卡在线观看| 91精品国产日韩91久久久久久| 首页国产欧美日韩丝袜|