?? sshprime.c
字號:
/*
* Prime generation.
*/
#include <assert.h>
#include "ssh.h"
/*
* This prime generation algorithm is pretty much cribbed from
* OpenSSL. The algorithm is:
*
* - invent a B-bit random number and ensure the top and bottom
* bits are set (so it's definitely B-bit, and it's definitely
* odd)
*
* - see if it's coprime to all primes below 2^16; increment it by
* two until it is (this shouldn't take long in general)
*
* - perform the Miller-Rabin primality test enough times to
* ensure the probability of it being composite is 2^-80 or
* less
*
* - go back to square one if any M-R test fails.
*/
/*
* The Miller-Rabin primality test is an extension to the Fermat
* test. The Fermat test just checks that a^(p-1) == 1 mod p; this
* is vulnerable to Carmichael numbers. Miller-Rabin considers how
* that 1 is derived as well.
*
* Lemma: if a^2 == 1 (mod p), and p is prime, then either a == 1
* or a == -1 (mod p).
*
* Proof: p divides a^2-1, i.e. p divides (a+1)(a-1). Hence,
* since p is prime, either p divides (a+1) or p divides (a-1).
* But this is the same as saying that either a is congruent to
* -1 mod p or a is congruent to +1 mod p. []
*
* Comment: This fails when p is not prime. Consider p=mn, so
* that mn divides (a+1)(a-1). Now we could have m dividing (a+1)
* and n dividing (a-1), without the whole of mn dividing either.
* For example, consider a=10 and p=99. 99 = 9 * 11; 9 divides
* 10-1 and 11 divides 10+1, so a^2 is congruent to 1 mod p
* without a having to be congruent to either 1 or -1.
*
* So the Miller-Rabin test, as well as considering a^(p-1),
* considers a^((p-1)/2), a^((p-1)/4), and so on as far as it can
* go. In other words. we write p-1 as q * 2^k, with k as large as
* possible (i.e. q must be odd), and we consider the powers
*
* a^(q*2^0) a^(q*2^1) ... a^(q*2^(k-1)) a^(q*2^k)
* i.e. a^((n-1)/2^k) a^((n-1)/2^(k-1)) ... a^((n-1)/2) a^(n-1)
*
* If p is to be prime, the last of these must be 1. Therefore, by
* the above lemma, the one before it must be either 1 or -1. And
* _if_ it's 1, then the one before that must be either 1 or -1,
* and so on ... In other words, we expect to see a trailing chain
* of 1s preceded by a -1. (If we're unlucky, our trailing chain of
* 1s will be as long as the list so we'll never get to see what
* lies before it. This doesn't count as a test failure because it
* hasn't _proved_ that p is not prime.)
*
* For example, consider a=2 and p=1729. 1729 is a Carmichael
* number: although it's not prime, it satisfies a^(p-1) == 1 mod p
* for any a coprime to it. So the Fermat test wouldn't have a
* problem with it at all, unless we happened to stumble on an a
* which had a common factor.
*
* So. 1729 - 1 equals 27 * 2^6. So we look at
*
* 2^27 mod 1729 == 645
* 2^108 mod 1729 == 1065
* 2^216 mod 1729 == 1
* 2^432 mod 1729 == 1
* 2^864 mod 1729 == 1
* 2^1728 mod 1729 == 1
*
* We do have a trailing string of 1s, so the Fermat test would
* have been happy. But this trailing string of 1s is preceded by
* 1065; whereas if 1729 were prime, we'd expect to see it preceded
* by -1 (i.e. 1728.). Guards! Seize this impostor.
*
* (If we were unlucky, we might have tried a=16 instead of a=2;
* now 16^27 mod 1729 == 1, so we would have seen a long string of
* 1s and wouldn't have seen the thing _before_ the 1s. So, just
* like the Fermat test, for a given p there may well exist values
* of a which fail to show up its compositeness. So we try several,
* just like the Fermat test. The difference is that Miller-Rabin
* is not _in general_ fooled by Carmichael numbers.)
*
* Put simply, then, the Miller-Rabin test requires us to:
*
* 1. write p-1 as q * 2^k, with q odd
* 2. compute z = (a^q) mod p.
* 3. report success if z == 1 or z == -1.
* 4. square z at most k-1 times, and report success if it becomes
* -1 at any point.
* 5. report failure otherwise.
*
* (We expect z to become -1 after at most k-1 squarings, because
* if it became -1 after k squarings then a^(p-1) would fail to be
* 1. And we don't need to investigate what happens after we see a
* -1, because we _know_ that -1 squared is 1 modulo anything at
* all, so after we've seen a -1 we can be sure of seeing nothing
* but 1s.)
*/
/*
* The first few odd primes.
*
* import sys
* def sieve(n):
* z = []
* list = []
* for i in range(n): z.append(1)
* for i in range(2,n):
* if z[i]:
* list.append(i)
* for j in range(i,n,i): z[j] = 0
* return list
* list = sieve(65535)
* for i in list[1:]: sys.stdout.write("%d," % i)
*/
static const unsigned short primes[] = {
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67,
71, 73, 79, 83, 89, 97, 101,
103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173,
179, 181, 191, 193,
197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271,
277, 281, 283, 293,
307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383,
389, 397, 401, 409,
419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491,
499, 503, 509, 521,
523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613,
617, 619, 631, 641,
643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733,
739, 743, 751, 757,
761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857,
859, 863, 877, 881,
883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983,
991, 997, 1009,
1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087,
1091, 1093,
1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187,
1193, 1201,
1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289,
1291, 1297,
1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409,
1423, 1427,
1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489,
1493, 1499,
1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597,
1601, 1607,
1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697,
1699, 1709,
1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801,
1811, 1823,
1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913,
1931, 1933,
1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999, 2003, 2011, 2017, 2027,
2029, 2039,
2053, 2063, 2069, 2081, 2083, 2087, 2089, 2099, 2111, 2113, 2129, 2131,
2137, 2141,
2143, 2153, 2161, 2179, 2203, 2207, 2213, 2221, 2237, 2239, 2243, 2251,
2267, 2269,
2273, 2281, 2287, 2293, 2297, 2309, 2311, 2333, 2339, 2341, 2347, 2351,
2357, 2371,
2377, 2381, 2383, 2389, 2393, 2399, 2411, 2417, 2423, 2437, 2441, 2447,
2459, 2467,
2473, 2477, 2503, 2521, 2531, 2539, 2543, 2549, 2551, 2557, 2579, 2591,
2593, 2609,
2617, 2621, 2633, 2647, 2657, 2659, 2663, 2671, 2677, 2683, 2687, 2689,
2693, 2699,
2707, 2711, 2713, 2719, 2729, 2731, 2741, 2749, 2753, 2767, 2777, 2789,
2791, 2797,
2801, 2803, 2819, 2833, 2837, 2843, 2851, 2857, 2861, 2879, 2887, 2897,
2903, 2909,
2917, 2927, 2939, 2953, 2957, 2963, 2969, 2971, 2999, 3001, 3011, 3019,
3023, 3037,
3041, 3049, 3061, 3067, 3079, 3083, 3089, 3109, 3119, 3121, 3137, 3163,
3167, 3169,
3181, 3187, 3191, 3203, 3209, 3217, 3221, 3229, 3251, 3253, 3257, 3259,
3271, 3299,
3301, 3307, 3313, 3319, 3323, 3329, 3331, 3343, 3347, 3359, 3361, 3371,
3373, 3389,
3391, 3407, 3413, 3433, 3449, 3457, 3461, 3463, 3467, 3469, 3491, 3499,
3511, 3517,
3527, 3529, 3533, 3539, 3541, 3547, 3557, 3559, 3571, 3581, 3583, 3593,
3607, 3613,
3617, 3623, 3631, 3637, 3643, 3659, 3671, 3673, 3677, 3691, 3697, 3701,
3709, 3719,
3727, 3733, 3739, 3761, 3767, 3769, 3779, 3793, 3797, 3803, 3821, 3823,
3833, 3847,
3851, 3853, 3863, 3877, 3881, 3889, 3907, 3911, 3917, 3919, 3923, 3929,
3931, 3943,
3947, 3967, 3989, 4001, 4003, 4007, 4013, 4019, 4021, 4027, 4049, 4051,
4057, 4073,
4079, 4091, 4093, 4099, 4111, 4127, 4129, 4133, 4139, 4153, 4157, 4159,
4177, 4201,
4211, 4217, 4219, 4229, 4231, 4241, 4243, 4253, 4259, 4261, 4271, 4273,
4283, 4289,
4297, 4327, 4337, 4339, 4349, 4357, 4363, 4373, 4391, 4397, 4409, 4421,
4423, 4441,
4447, 4451, 4457, 4463, 4481, 4483, 4493, 4507, 4513, 4517, 4519, 4523,
4547, 4549,
4561, 4567, 4583, 4591, 4597, 4603, 4621, 4637, 4639, 4643, 4649, 4651,
4657, 4663,
4673, 4679, 4691, 4703, 4721, 4723, 4729, 4733, 4751, 4759, 4783, 4787,
4789, 4793,
4799, 4801, 4813, 4817, 4831, 4861, 4871, 4877, 4889, 4903, 4909, 4919,
4931, 4933,
4937, 4943, 4951, 4957, 4967, 4969, 4973, 4987, 4993, 4999, 5003, 5009,
5011, 5021,
5023, 5039, 5051, 5059, 5077, 5081, 5087, 5099, 5101, 5107, 5113, 5119,
5147, 5153,
5167, 5171, 5179, 5189, 5197, 5209, 5227, 5231, 5233, 5237, 5261, 5273,
5279, 5281,
5297, 5303, 5309, 5323, 5333, 5347, 5351, 5381, 5387, 5393, 5399, 5407,
5413, 5417,
5419, 5431, 5437, 5441, 5443, 5449, 5471, 5477, 5479, 5483, 5501, 5503,
5507, 5519,
5521, 5527, 5531, 5557, 5563, 5569, 5573, 5581, 5591, 5623, 5639, 5641,
5647, 5651,
5653, 5657, 5659, 5669, 5683, 5689, 5693, 5701, 5711, 5717, 5737, 5741,
5743, 5749,
5779, 5783, 5791, 5801, 5807, 5813, 5821, 5827, 5839, 5843, 5849, 5851,
5857, 5861,
5867, 5869, 5879, 5881, 5897, 5903, 5923, 5927, 5939, 5953, 5981, 5987,
6007, 6011,
6029, 6037, 6043, 6047, 6053, 6067, 6073, 6079, 6089, 6091, 6101, 6113,
6121, 6131,
6133, 6143, 6151, 6163, 6173, 6197, 6199, 6203, 6211, 6217, 6221, 6229,
6247, 6257,
6263, 6269, 6271, 6277, 6287, 6299, 6301, 6311, 6317, 6323, 6329, 6337,
6343, 6353,
6359, 6361, 6367, 6373, 6379, 6389, 6397, 6421, 6427, 6449, 6451, 6469,
6473, 6481,
6491, 6521, 6529, 6547, 6551, 6553, 6563, 6569, 6571, 6577, 6581, 6599,
6607, 6619,
6637, 6653, 6659, 6661, 6673, 6679, 6689, 6691, 6701, 6703, 6709, 6719,
6733, 6737,
6761, 6763, 6779, 6781, 6791, 6793, 6803, 6823, 6827, 6829, 6833, 6841,
6857, 6863,
6869, 6871, 6883, 6899, 6907, 6911, 6917, 6947, 6949, 6959, 6961, 6967,
6971, 6977,
6983, 6991, 6997, 7001, 7013, 7019, 7027, 7039, 7043, 7057, 7069, 7079,
7103, 7109,
7121, 7127, 7129, 7151, 7159, 7177, 7187, 7193, 7207, 7211, 7213, 7219,
7229, 7237,
7243, 7247, 7253, 7283, 7297, 7307, 7309, 7321, 7331, 7333, 7349, 7351,
7369, 7393,
7411, 7417, 7433, 7451, 7457, 7459, 7477, 7481, 7487, 7489, 7499, 7507,
7517, 7523,
7529, 7537, 7541, 7547, 7549, 7559, 7561, 7573, 7577, 7583, 7589, 7591,
7603, 7607,
7621, 7639, 7643, 7649, 7669, 7673, 7681, 7687, 7691, 7699, 7703, 7717,
7723, 7727,
7741, 7753, 7757, 7759, 7789, 7793, 7817, 7823, 7829, 7841, 7853, 7867,
7873, 7877,
7879, 7883, 7901, 7907, 7919, 7927, 7933, 7937, 7949, 7951, 7963, 7993,
8009, 8011,
8017, 8039, 8053, 8059, 8069, 8081, 8087, 8089, 8093, 8101, 8111, 8117,
8123, 8147,
8161, 8167, 8171, 8179, 8191, 8209, 8219, 8221, 8231, 8233, 8237, 8243,
8263, 8269,
8273, 8287, 8291, 8293, 8297, 8311, 8317, 8329, 8353, 8363, 8369, 8377,
8387, 8389,
8419, 8423, 8429, 8431, 8443, 8447, 8461, 8467, 8501, 8513, 8521, 8527,
8537, 8539,
8543, 8563, 8573, 8581, 8597, 8599, 8609, 8623, 8627, 8629, 8641, 8647,
8663, 8669,
8677, 8681, 8689, 8693, 8699, 8707, 8713, 8719, 8731, 8737, 8741, 8747,
8753, 8761,
8779, 8783, 8803, 8807, 8819, 8821, 8831, 8837, 8839, 8849, 8861, 8863,
8867, 8887,
8893, 8923, 8929, 8933, 8941, 8951, 8963, 8969, 8971, 8999, 9001, 9007,
9011, 9013,
9029, 9041, 9043, 9049, 9059, 9067, 9091, 9103, 9109, 9127, 9133, 9137,
9151, 9157,
9161, 9173, 9181, 9187, 9199, 9203, 9209, 9221, 9227, 9239, 9241, 9257,
9277, 9281,
9283, 9293, 9311, 9319, 9323, 9337, 9341, 9343, 9349, 9371, 9377, 9391,
9397, 9403,
9413, 9419, 9421, 9431, 9433, 9437, 9439, 9461, 9463, 9467, 9473, 9479,
9491, 9497,
9511, 9521, 9533, 9539, 9547, 9551, 9587, 9601, 9613, 9619, 9623, 9629,
9631, 9643,
9649, 9661, 9677, 9679, 9689, 9697, 9719, 9721, 9733, 9739, 9743, 9749,
9767, 9769,
9781, 9787, 9791, 9803, 9811, 9817, 9829, 9833, 9839, 9851, 9857, 9859,
9871, 9883,
9887, 9901, 9907, 9923, 9929, 9931, 9941, 9949, 9967, 9973, 10007,
10009, 10037,
10039, 10061, 10067, 10069, 10079, 10091, 10093, 10099, 10103, 10111,
10133, 10139,
10141, 10151, 10159, 10163, 10169, 10177, 10181, 10193, 10211, 10223,
10243, 10247,
10253, 10259, 10267, 10271, 10273, 10289, 10301, 10303, 10313, 10321,
10331, 10333,
10337, 10343, 10357, 10369, 10391, 10399, 10427, 10429, 10433, 10453,
10457, 10459,
10463, 10477, 10487, 10499, 10501, 10513, 10529, 10531, 10559, 10567,
10589, 10597,
10601, 10607, 10613, 10627, 10631, 10639, 10651, 10657, 10663, 10667,
10687, 10691,
10709, 10711, 10723, 10729, 10733, 10739, 10753, 10771, 10781, 10789,
10799, 10831,
10837, 10847, 10853, 10859, 10861, 10867, 10883, 10889, 10891, 10903,
10909, 10937,
10939, 10949, 10957, 10973, 10979, 10987, 10993, 11003, 11027, 11047,
11057, 11059,
11069, 11071, 11083, 11087, 11093, 11113, 11117, 11119, 11131, 11149,
11159, 11161,
11171, 11173, 11177, 11197, 11213, 11239, 11243, 11251, 11257, 11261,
11273, 11279,
11287, 11299, 11311, 11317, 11321, 11329, 11351, 11353, 11369, 11383,
11393, 11399,
11411, 11423, 11437, 11443, 11447, 11467, 11471, 11483, 11489, 11491,
11497, 11503,
11519, 11527, 11549, 11551, 11579, 11587, 11593, 11597, 11617, 11621,
11633, 11657,
11677, 11681, 11689, 11699, 11701, 11717, 11719, 11731, 11743, 11777,
11779, 11783,
11789, 11801, 11807, 11813, 11821, 11827, 11831, 11833, 11839, 11863,
11867, 11887,
11897, 11903, 11909, 11923, 11927, 11933, 11939, 11941, 11953, 11959,
11969, 11971,
11981, 11987, 12007, 12011, 12037, 12041, 12043, 12049, 12071, 12073,
12097, 12101,
12107, 12109, 12113, 12119, 12143, 12149, 12157, 12161, 12163, 12197,
12203, 12211,
12227, 12239, 12241, 12251, 12253, 12263, 12269, 12277, 12281, 12289,
12301, 12323,
12329, 12343, 12347, 12373, 12377, 12379, 12391, 12401, 12409, 12413,
12421, 12433,
12437, 12451, 12457, 12473, 12479, 12487, 12491, 12497, 12503, 12511,
12517, 12527,
12539, 12541, 12547, 12553, 12569, 12577, 12583, 12589, 12601, 12611,
12613, 12619,
12637, 12641, 12647, 12653, 12659, 12671, 12689, 12697, 12703, 12713,
12721, 12739,
12743, 12757, 12763, 12781, 12791, 12799, 12809, 12821, 12823, 12829,
12841, 12853,
12889, 12893, 12899, 12907, 12911, 12917, 12919, 12923, 12941, 12953,
12959, 12967,
12973, 12979, 12983, 13001, 13003, 13007, 13009, 13033, 13037, 13043,
13049, 13063,
13093, 13099, 13103, 13109, 13121, 13127, 13147, 13151, 13159, 13163,
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -