?? lattice.m
字號(hào):
function [MX,PE,arg3] = lattice(Y,lc,Mode);% Estimates AR(p) model parameter with lattice algorithm (Burg 1968) % for multiple channels. % If you have the NaN-tools, LATTICE.M can handle missing values (NaN), %% [...] = lattice(y [,Pmax [,Mode]]);%% [AR,RC,PE] = lattice(...);% [MX,PE] = lattice(...);%% INPUT:% y signal (one per row), can contain missing values (encoded as NaN)% Pmax max. model order (default size(y,2)-1))% Mode 'BURG' (default) Burg algorithm% 'GEOL' geometric lattice%% OUTPUT% AR autoregressive model parameter % RC reflection coefficients (= -PARCOR coefficients)% PE remaining error variance% MX transformation matrix between ARP and RC (Attention: needs O(p^2) memory)% AR(:,K) = MX(:, K*(K-1)/2+(1:K)); = MX(:,sum(1:K-1)+(1:K)); % RC(:,K) = MX(:,cumsum(1:K)); = MX(:,(1:K).*(2:K+1)/2);%% All input and output parameters are organized in rows, one row % corresponds to the parameters of one channel%% see also ACOVF ACORF AR2RC RC2AR DURLEV SUMSKIPNAN % % REFERENCE(S):% J.P. Burg, "Maximum Entropy Spectral Analysis" Proc. 37th Meeting of the Society of Exp. Geophysiscists, Oklahoma City, OK 1967% J.P. Burg, "Maximum Entropy Spectral Analysis" PhD-thesis, Dept. of Geophysics, Stanford University, Stanford, CA. 1975.% P.J. Brockwell and R. A. Davis "Time Series: Theory and Methods", 2nd ed. Springer, 1991.% S. Haykin "Adaptive Filter Theory" 3rd ed. Prentice Hall, 1996.% M.B. Priestley "Spectral Analysis and Time Series" Academic Press, 1981. % W.S. Wei "Time Series Analysis" Addison Wesley, 1990.% Version 2.90% last revision 06.04.2002% Copyright (c) 1996-2002 by Alois Schloegl% e-mail: a.schloegl@ieee.org %% .changelog TSA-toolbox% 06.04.02 LATTICE.M V2.90 % 27.02.02 LATTICE.M minor bug fix % 08.02.02 LATTICE.M bootstrap shows that V2.83 is preferable% 08.02.02 LATTICE.M V2.83 saved as lattice283% 08.02.02 LATTICE.M V2.82 saved as lattice282% 04.02.02 LATTICE.M V2.83% normalization changed from 1 (mean) to (k-1)/k (sum)% 08.11.01 LATTICE.M V2.75% help improved% 11.04.01 LATTICE.M V2.73% 1) sum (and sumskipnan's) were replaced by mean, this has the effect of% normalizing with actual number of elements. This seem to improve the estimates% 2) residual tested, seem to be smaller than for estimates with AR.M% 3) handling of NaN (i.e. Missing values) is hidden in NaN/mean% in other words, if NaN/mean is used this algorithm can be used for data with missing values, too. % This library is free software; you can redistribute it and/or% modify it under the terms of the GNU Library General Public% License as published by the Free Software Foundation; either% Version 2 of the License, or (at your option) any later version.%% This library is distributed in the hope that it will be useful,% but WITHOUT ANY WARRANTY; without even the implied warranty of% MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU% Library General Public License for more details.%% You should have received a copy of the GNU Library General Public% License along with this library; if not, write to the% Free Software Foundation, Inc., 59 Temple Place - Suite 330,% Boston, MA 02111-1307, USA.if nargin<3, Mode='BURG'; else Mode=upper(Mode(1:4));end;BURG=~strcmp(Mode,'GEOL');% Inititialization[lr,N]=size(Y);if nargin<2, lc=N-1; end;F=Y;B=Y;[DEN,nn] = sumskipnan((Y.*Y),2);PE = [DEN./nn,zeros(lr,lc)];if nargout<3 % needs O(p^2) memory MX = zeros(lr,lc*(lc+1)/2); idx= 0; % Durbin-Levinson Algorithm for K=1:lc, [TMP,nn] = sumskipnan(F(:,K+1:N).*B(:,1:N-K),2); MX(:,idx+K) = TMP./DEN; %Burg if K>1, %for compatibility with OCTAVE 2.0.13 MX(:,idx+(1:K-1))=MX(:,(K-2)*(K-1)/2+(1:K-1))-MX(:,(idx+K)*ones(K-1,1)).*MX(:,(K-2)*(K-1)/2+(K-1:-1:1)); end; tmp = F(:,K+1:N) - MX(:,(idx+K)*ones(1,N-K)).*B(:,1:N-K); B(:,1:N-K) = B(:,1:N-K) - MX(:,(idx+K)*ones(1,N-K)).*F(:,K+1:N); F(:,K+1:N) = tmp; [PE(:,K+1),nn] = sumskipnan([F(:,K+1:N).^2,B(:,1:N-K).^2],2); if ~BURG, [f,nf] = sumskipnan(F(:,K+1:N).^2,2); [b,nb] = sumskipnan(B(:,1:N-K).^2,2); DEN = sqrt(b.*f); else DEN = PE(:,K+1); end; idx=idx+K; PE(:,K+1) = PE(:,K+1)./nn; % estimate of covariance end;else % needs O(p) memory arp=zeros(lr,lc-1); rc=zeros(lr,lc-1); % Durbin-Levinson Algorithm for K=1:lc, [TMP,nn] = sumskipnan(F(:,K+1:N).*B(:,1:N-K),2); arp(:,K) = TMP./DEN; %Burg rc(:,K) = arp(:,K); if K>1, % for compatibility with OCTAVE 2.0.13 arp(:,1:K-1) = arp(:,1:K-1) - arp(:,K*ones(K-1,1)).*arp(:,K-1:-1:1); end; tmp = F(:,K+1:N) - rc(:,K*ones(1,N-K)).*B(:,1:N-K); B(:,1:N-K) = B(:,1:N-K) - rc(:,K*ones(1,N-K)).*F(:,K+1:N); F(:,K+1:N) = tmp; [PE(:,K+1),nn] = sumskipnan([F(:,K+1:N).^2,B(:,1:N-K).^2],2); if ~BURG, [f,nf] = sumskipnan(F(:,K+1:N).^2,2); [b,nb] = sumskipnan(B(:,1:N-K).^2,2); DEN = sqrt(b.*f); else DEN = PE(:,K+1); end; PE(:,K+1) = PE(:,K+1)./nn; % estimate of covariance end;% assign output arguments arg3=PE; PE=rc; MX=arp;end; %if
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -