?? stm32l1xx_spi.c
字號:
/**
******************************************************************************
* @file stm32l1xx_spi.c
* @author MCD Application Team
* @version V1.1.0
* @date 24-January-2012
* @brief This file provides firmware functions to manage the following
* functionalities of the Serial peripheral interface (SPI):
* + Initialization and Configuration
* + Data transfers functions
* + Hardware CRC Calculation
* + DMA transfers management
* + Interrupts and flags management
*
* @verbatim
[..] The I2S feature is not implemented in STM32L1xx Ultra Low Power
Medium-density devices and it's supported only STM32L1xx Ultra Low Power
Medium-density Plus and High-density devices.
===============================================================================
##### How to use this driver #####
===============================================================================
[..]
(#) Enable peripheral clock using RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE)
function for SPI1 or using RCC_APB1PeriphClockCmd(RCC_APB1Periph_SPI2, ENABLE)
function for SPI2 or using RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE)
for SPI3.
(#) Enable SCK, MOSI, MISO and NSS GPIO clocks using
RCC_AHBPeriphClockCmd() function.
(#) Peripherals alternate function:
(++) Connect the pin to the desired peripherals' Alternate
Function (AF) using GPIO_PinAFConfig() function.
(++) Configure the desired pin in alternate function by:
GPIO_InitStruct->GPIO_Mode = GPIO_Mode_AF.
(++) Select the type, pull-up/pull-down and output speed via
GPIO_PuPd, GPIO_OType and GPIO_Speed members.
(++) Call GPIO_Init() function.
(#) Program the Polarity, Phase, First Data, Baud Rate Prescaler, Slave
Management, Peripheral Mode and CRC Polynomial values using the SPI_Init()
function.In I2S mode, program the Mode, Standard, Data Format, MCLK
Output, Audio frequency and Polarity using I2S_Init() function.
(#) Enable the NVIC and the corresponding interrupt using the function
SPI_ITConfig() if you need to use interrupt mode.
(#) When using the DMA mode
(++) Configure the DMA using DMA_Init() function.
(++) Active the needed channel Request using SPI_I2S_DMACmd() function.
(#) Enable the SPI using the SPI_Cmd() function or enable the I2S using
I2S_Cmd().
(#) Enable the DMA using the DMA_Cmd() function when using DMA mode.
(#) Optionally, you can enable/configure the following parameters without
re-initialization (i.e there is no need to call again SPI_Init() function):
(++) When bidirectional mode (SPI_Direction_1Line_Rx or SPI_Direction_1Line_Tx)
is programmed as Data direction parameter using the SPI_Init()
function it can be possible to switch between SPI_Direction_Tx
or SPI_Direction_Rx using the SPI_BiDirectionalLineConfig() function.
(++) When SPI_NSS_Soft is selected as Slave Select Management parameter
using the SPI_Init() function it can be possible to manage the
NSS internal signal using the SPI_NSSInternalSoftwareConfig() function.
(++) Reconfigure the data size using the SPI_DataSizeConfig() function.
(++) Enable or disable the SS output using the SPI_SSOutputCmd() function.
(#) To use the CRC Hardware calculation feature refer to the Peripheral
CRC hardware Calculation subsection.
@endverbatim
******************************************************************************
* @attention
*
* THE PRESENT FIRMWARE WHICH IS FOR GUIDANCE ONLY AIMS AT PROVIDING CUSTOMERS
* WITH CODING INFORMATION REGARDING THEIR PRODUCTS IN ORDER FOR THEM TO SAVE
* TIME. AS A RESULT, STMICROELECTRONICS SHALL NOT BE HELD LIABLE FOR ANY
* DIRECT, INDIRECT OR CONSEQUENTIAL DAMAGES WITH RESPECT TO ANY CLAIMS ARISING
* FROM THE CONTENT OF SUCH FIRMWARE AND/OR THE USE MADE BY CUSTOMERS OF THE
* CODING INFORMATION CONTAINED HEREIN IN CONNECTION WITH THEIR PRODUCTS.
*
* FOR MORE INFORMATION PLEASE READ CAREFULLY THE LICENSE AGREEMENT FILE
* LOCATED IN THE ROOT DIRECTORY OF THIS FIRMWARE PACKAGE.
*
* <h2><center>© COPYRIGHT 2012 STMicroelectronics</center></h2>
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32l1xx_spi.h"
#include "stm32l1xx_rcc.h"
/** @addtogroup STM32L1xx_StdPeriph_Driver
* @{
*/
/** @defgroup SPI
* @brief SPI driver modules
* @{
*/
/* Private typedef -----------------------------------------------------------*/
/* Private define ------------------------------------------------------------*/
/* SPI registers Masks */
#define CR1_CLEAR_MASK ((uint16_t)0x3040)
#define I2SCFGR_CLEAR_Mask ((uint16_t)0xF040)
/* Private macro -------------------------------------------------------------*/
/* Private variables ---------------------------------------------------------*/
/* Private function prototypes -----------------------------------------------*/
/* Private functions ---------------------------------------------------------*/
/** @defgroup SPI_Private_Functions
* @{
*/
/** @defgroup SPI_Group1 Initialization and Configuration functions
* @brief Initialization and Configuration functions
*
@verbatim
===============================================================================
##### Initialization and Configuration functions #####
===============================================================================
[..] This section provides a set of functions allowing to initialize the SPI
Direction, SPI Mode, SPI Data Size, SPI Polarity, SPI Phase, SPI NSS
Management, SPI Baud Rate Prescaler, SPI First Bit and SPI CRC Polynomial.
[..] The SPI_Init() function follows the SPI configuration procedures for
Master mode and Slave mode (details for these procedures are available
in reference manual (RM0038)).
@endverbatim
* @{
*/
/**
* @brief Deinitializes the SPIx peripheral registers to their default
* reset values.
* @param SPIx: To select the SPIx/I2Sx peripheral, where x can be: 1, 2 or 3
* in SPI mode or 2 or 3 in I2S mode.
* @retval None
*/
void SPI_I2S_DeInit(SPI_TypeDef* SPIx)
{
/* Check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
if (SPIx == SPI1)
{
/* Enable SPI1 reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, ENABLE);
/* Release SPI1 from reset state */
RCC_APB2PeriphResetCmd(RCC_APB2Periph_SPI1, DISABLE);
}
else if (SPIx == SPI2)
{
/* Enable SPI2 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, ENABLE);
/* Release SPI2 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI2, DISABLE);
}
else
{
if (SPIx == SPI3)
{
/* Enable SPI3 reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, ENABLE);
/* Release SPI3 from reset state */
RCC_APB1PeriphResetCmd(RCC_APB1Periph_SPI3, DISABLE);
}
}
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the SPI_InitStruct.
* @param SPIx: where x can be 1, 2 or 3 to select the SPI peripheral.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure that
* contains the configuration information for the specified SPI peripheral.
* @retval None
*/
void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct)
{
uint16_t tmpreg = 0;
/* check the parameters */
assert_param(IS_SPI_ALL_PERIPH(SPIx));
/* Check the SPI parameters */
assert_param(IS_SPI_DIRECTION_MODE(SPI_InitStruct->SPI_Direction));
assert_param(IS_SPI_MODE(SPI_InitStruct->SPI_Mode));
assert_param(IS_SPI_DATASIZE(SPI_InitStruct->SPI_DataSize));
assert_param(IS_SPI_CPOL(SPI_InitStruct->SPI_CPOL));
assert_param(IS_SPI_CPHA(SPI_InitStruct->SPI_CPHA));
assert_param(IS_SPI_NSS(SPI_InitStruct->SPI_NSS));
assert_param(IS_SPI_BAUDRATE_PRESCALER(SPI_InitStruct->SPI_BaudRatePrescaler));
assert_param(IS_SPI_FIRST_BIT(SPI_InitStruct->SPI_FirstBit));
assert_param(IS_SPI_CRC_POLYNOMIAL(SPI_InitStruct->SPI_CRCPolynomial));
/*---------------------------- SPIx CR1 Configuration ------------------------*/
/* Get the SPIx CR1 value */
tmpreg = SPIx->CR1;
/* Clear BIDIMode, BIDIOE, RxONLY, SSM, SSI, LSBFirst, BR, MSTR, CPOL and CPHA bits */
tmpreg &= CR1_CLEAR_MASK;
/* Configure SPIx: direction, NSS management, first transmitted bit, BaudRate prescaler
master/salve mode, CPOL and CPHA */
/* Set BIDImode, BIDIOE and RxONLY bits according to SPI_Direction value */
/* Set SSM, SSI and MSTR bits according to SPI_Mode and SPI_NSS values */
/* Set LSBFirst bit according to SPI_FirstBit value */
/* Set BR bits according to SPI_BaudRatePrescaler value */
/* Set CPOL bit according to SPI_CPOL value */
/* Set CPHA bit according to SPI_CPHA value */
tmpreg |= (uint16_t)((uint32_t)SPI_InitStruct->SPI_Direction | SPI_InitStruct->SPI_Mode |
SPI_InitStruct->SPI_DataSize | SPI_InitStruct->SPI_CPOL |
SPI_InitStruct->SPI_CPHA | SPI_InitStruct->SPI_NSS |
SPI_InitStruct->SPI_BaudRatePrescaler | SPI_InitStruct->SPI_FirstBit);
/* Write to SPIx CR1 */
SPIx->CR1 = tmpreg;
/* Activate the SPI mode (Reset I2SMOD bit in I2SCFGR register) */
SPIx->I2SCFGR &= (uint16_t)~((uint16_t)SPI_I2SCFGR_I2SMOD);
/*---------------------------- SPIx CRCPOLY Configuration --------------------*/
/* Write to SPIx CRCPOLY */
SPIx->CRCPR = SPI_InitStruct->SPI_CRCPolynomial;
}
/**
* @brief Initializes the SPIx peripheral according to the specified
* parameters in the I2S_InitStruct.
* @param SPIx: where x can be 2 or 3 to select the SPI peripheral
* (configured in I2S mode).
* @param I2S_InitStruct: pointer to an I2S_InitTypeDef structure that
* contains the configuration information for the specified SPI peripheral
* configured in I2S mode.
* @note
* The function calculates the optimal prescaler needed to obtain the most
* accurate audio frequency (depending on the I2S clock source, the PLL values
* and the product configuration). But in case the prescaler value is greater
* than 511, the default value (0x02) will be configured instead.
* @retval None
*/
void I2S_Init(SPI_TypeDef* SPIx, I2S_InitTypeDef* I2S_InitStruct)
{
uint16_t tmpreg = 0, i2sdiv = 2, i2sodd = 0, packetlength = 1;
uint32_t tmp = 0;
RCC_ClocksTypeDef RCC_Clocks;
uint32_t sourceclock = 0;
/* Check the I2S parameters */
assert_param(IS_SPI_23_PERIPH(SPIx));
assert_param(IS_I2S_MODE(I2S_InitStruct->I2S_Mode));
assert_param(IS_I2S_STANDARD(I2S_InitStruct->I2S_Standard));
assert_param(IS_I2S_DATA_FORMAT(I2S_InitStruct->I2S_DataFormat));
assert_param(IS_I2S_MCLK_OUTPUT(I2S_InitStruct->I2S_MCLKOutput));
assert_param(IS_I2S_AUDIO_FREQ(I2S_InitStruct->I2S_AudioFreq));
assert_param(IS_I2S_CPOL(I2S_InitStruct->I2S_CPOL));
/*----------------------- SPIx I2SCFGR & I2SPR Configuration -----------------*/
/* Clear I2SMOD, I2SE, I2SCFG, PCMSYNC, I2SSTD, CKPOL, DATLEN and CHLEN bits */
SPIx->I2SCFGR &= I2SCFGR_CLEAR_Mask;
SPIx->I2SPR = 0x0002;
/* Get the I2SCFGR register value */
tmpreg = SPIx->I2SCFGR;
/* If the default value has to be written, reinitialize i2sdiv and i2sodd*/
if(I2S_InitStruct->I2S_AudioFreq == I2S_AudioFreq_Default)
{
i2sodd = (uint16_t)0;
i2sdiv = (uint16_t)2;
}
/* If the requested audio frequency is not the default, compute the prescaler */
else
{
/* Check the frame length (For the Prescaler computing) */
if(I2S_InitStruct->I2S_DataFormat == I2S_DataFormat_16b)
{
/* Packet length is 16 bits */
packetlength = 1;
}
else
{
/* Packet length is 32 bits */
packetlength = 2;
}
/* I2S Clock source is System clock: Get System Clock frequency */
RCC_GetClocksFreq(&RCC_Clocks);
/* Get the source clock value: based on System Clock value */
sourceclock = RCC_Clocks.SYSCLK_Frequency;
/* Compute the Real divider depending on the MCLK output state with a flaoting point */
if(I2S_InitStruct->I2S_MCLKOutput == I2S_MCLKOutput_Enable)
{
/* MCLK output is enabled */
tmp = (uint16_t)(((((sourceclock / 256) * 10) / I2S_InitStruct->I2S_AudioFreq)) + 5);
}
else
{
/* MCLK output is disabled */
tmp = (uint16_t)(((((sourceclock / (32 * packetlength)) *10 ) / I2S_InitStruct->I2S_AudioFreq)) + 5);
}
/* Remove the flaoting point */
tmp = tmp / 10;
/* Check the parity of the divider */
i2sodd = (uint16_t)(tmp & (uint16_t)0x0001);
/* Compute the i2sdiv prescaler */
i2sdiv = (uint16_t)((tmp - i2sodd) / 2);
/* Get the Mask for the Odd bit (SPI_I2SPR[8]) register */
i2sodd = (uint16_t) (i2sodd << 8);
}
/* Test if the divider is 1 or 0 or greater than 0xFF */
if ((i2sdiv < 2) || (i2sdiv > 0xFF))
{
/* Set the default values */
i2sdiv = 2;
i2sodd = 0;
}
/* Write to SPIx I2SPR register the computed value */
SPIx->I2SPR = (uint16_t)(i2sdiv | (uint16_t)(i2sodd | (uint16_t)I2S_InitStruct->I2S_MCLKOutput));
/* Configure the I2S with the SPI_InitStruct values */
tmpreg |= (uint16_t)(SPI_I2SCFGR_I2SMOD | (uint16_t)(I2S_InitStruct->I2S_Mode | \
(uint16_t)(I2S_InitStruct->I2S_Standard | (uint16_t)(I2S_InitStruct->I2S_DataFormat | \
(uint16_t)I2S_InitStruct->I2S_CPOL))));
/* Write to SPIx I2SCFGR */
SPIx->I2SCFGR = tmpreg;
}
/**
* @brief Fills each SPI_InitStruct member with its default value.
* @param SPI_InitStruct: pointer to a SPI_InitTypeDef structure which will be initialized.
* @retval None
*/
void SPI_StructInit(SPI_InitTypeDef* SPI_InitStruct)
{
/*--------------- Reset SPI init structure parameters values -----------------*/
/* Initialize the SPI_Direction member */
SPI_InitStruct->SPI_Direction = SPI_Direction_2Lines_FullDuplex;
/* initialize the SPI_Mode member */
SPI_InitStruct->SPI_Mode = SPI_Mode_Slave;
/* initialize the SPI_DataSize member */
SPI_InitStruct->SPI_DataSize = SPI_DataSize_8b;
/* Initialize the SPI_CPOL member */
SPI_InitStruct->SPI_CPOL = SPI_CPOL_Low;
/* Initialize the SPI_CPHA member */
SPI_InitStruct->SPI_CPHA = SPI_CPHA_1Edge;
/* Initialize the SPI_NSS member */
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -