?? exit.c
字號(hào):
/* * linux/kernel/exit.c * * Copyright (C) 1991, 1992 Linus Torvalds */#include <linux/config.h>#include <linux/slab.h>#include <linux/interrupt.h>#include <linux/smp_lock.h>#include <linux/module.h>#include <linux/completion.h>#include <linux/personality.h>#include <linux/tty.h>#include <linux/namespace.h>#ifdef CONFIG_BSD_PROCESS_ACCT#include <linux/acct.h>#endif#include <linux/trace.h>#include <asm/uaccess.h>#include <asm/pgtable.h>#include <asm/mmu_context.h>extern void sem_exit (void);extern struct task_struct *child_reaper;int getrusage(struct task_struct *, int, struct rusage *);static void release_task(struct task_struct * p){ if (p == current) BUG();#ifdef CONFIG_SMP wait_task_inactive(p);#endif atomic_dec(&p->user->processes); free_uid(p->user); unhash_process(p); release_thread(p); current->cmin_flt += p->min_flt + p->cmin_flt; current->cmaj_flt += p->maj_flt + p->cmaj_flt; current->cnswap += p->nswap + p->cnswap; sched_exit(p); p->pid = 0; free_task_struct(p);}/* * This checks not only the pgrp, but falls back on the pid if no * satisfactory pgrp is found. I dunno - gdb doesn't work correctly * without this... */int session_of_pgrp(int pgrp){ struct task_struct *p; int fallback; fallback = -1; read_lock(&tasklist_lock); for_each_task(p) { if (p->session <= 0) continue; if (p->pgrp == pgrp) { fallback = p->session; break; } if (p->pid == pgrp) fallback = p->session; } read_unlock(&tasklist_lock); return fallback;}/* * Determine if a process group is "orphaned", according to the POSIX * definition in 2.2.2.52. Orphaned process groups are not to be affected * by terminal-generated stop signals. Newly orphaned process groups are * to receive a SIGHUP and a SIGCONT. * * "I ask you, have you ever known what it is to be an orphan?" */static int will_become_orphaned_pgrp(int pgrp, struct task_struct * ignored_task){ struct task_struct *p; read_lock(&tasklist_lock); for_each_task(p) { if ((p == ignored_task) || (p->pgrp != pgrp) || (p->state == TASK_ZOMBIE) || (p->p_pptr->pid == 1)) continue; if ((p->p_pptr->pgrp != pgrp) && (p->p_pptr->session == p->session)) { read_unlock(&tasklist_lock); return 0; } } read_unlock(&tasklist_lock); return 1; /* (sighing) "Often!" */}int is_orphaned_pgrp(int pgrp){ return will_become_orphaned_pgrp(pgrp, 0);}static inline int has_stopped_jobs(int pgrp){ int retval = 0; struct task_struct * p; read_lock(&tasklist_lock); for_each_task(p) { if (p->pgrp != pgrp) continue; if (p->state != TASK_STOPPED) continue; retval = 1; break; } read_unlock(&tasklist_lock); return retval;}/** * reparent_to_init() - Reparent the calling kernel thread to the init task. * * If a kernel thread is launched as a result of a system call, or if * it ever exits, it should generally reparent itself to init so that * it is correctly cleaned up on exit. * * The various task state such as scheduling policy and priority may have * been inherited from a user process, so we reset them to sane values here. * * NOTE that reparent_to_init() gives the caller full capabilities. */void reparent_to_init(void){ write_lock_irq(&tasklist_lock); /* Reparent to init */ REMOVE_LINKS(current); current->p_pptr = child_reaper; current->p_opptr = child_reaper; SET_LINKS(current); /* Set the exit signal to SIGCHLD so we signal init on exit */ current->exit_signal = SIGCHLD; current->ptrace = 0; if ((current->policy == SCHED_OTHER) && (task_nice(current) < 0)) set_user_nice(current, 0); /* cpus_allowed? */ /* rt_priority? */ /* signals? */ current->cap_effective = CAP_INIT_EFF_SET; current->cap_inheritable = CAP_INIT_INH_SET; current->cap_permitted = CAP_FULL_SET; current->keep_capabilities = 0; memcpy(current->rlim, init_task.rlim, sizeof(*(current->rlim))); current->user = INIT_USER; write_unlock_irq(&tasklist_lock);}/* * Put all the gunge required to become a kernel thread without * attached user resources in one place where it belongs. */void daemonize(void){ struct fs_struct *fs; /* * If we were started as result of loading a module, close all of the * user space pages. We don't need them, and if we didn't close them * they would be locked into memory. */ exit_mm(current); current->session = 1; current->pgrp = 1; current->tty = NULL; /* Become as one with the init task */ exit_fs(current); /* current->fs->count--; */ fs = init_task.fs; current->fs = fs; atomic_inc(&fs->count); exit_files(current); current->files = init_task.files; atomic_inc(¤t->files->count);}/* * When we die, we re-parent all our children. * Try to give them to another thread in our thread * group, and if no such member exists, give it to * the global child reaper process (ie "init") */static inline void forget_original_parent(struct task_struct * father){ struct task_struct * p; read_lock(&tasklist_lock); for_each_task(p) { if (p->p_opptr == father) { /* We dont want people slaying init */ p->exit_signal = SIGCHLD; p->self_exec_id++; /* Make sure we're not reparenting to ourselves */ p->p_opptr = child_reaper; p->first_time_slice = 0; if (p->pdeath_signal) send_sig(p->pdeath_signal, p, 0); } } read_unlock(&tasklist_lock);}static inline void close_files(struct files_struct * files){ int i, j; j = 0; for (;;) { unsigned long set; i = j * __NFDBITS; if (i >= files->max_fdset || i >= files->max_fds) break; set = files->open_fds->fds_bits[j++]; while (set) { if (set & 1) { struct file * file = xchg(&files->fd[i], NULL); if (file) filp_close(file, files); } i++; set >>= 1; debug_lock_break(1); conditional_schedule(); } }}void put_files_struct(struct files_struct *files){ if (atomic_dec_and_test(&files->count)) { close_files(files); /* * Free the fd and fdset arrays if we expanded them. */ if (files->fd != &files->fd_array[0]) free_fd_array(files->fd, files->max_fds); if (files->max_fdset > __FD_SETSIZE) { free_fdset(files->open_fds, files->max_fdset); free_fdset(files->close_on_exec, files->max_fdset); } kmem_cache_free(files_cachep, files); }}static inline void __exit_files(struct task_struct *tsk){ struct files_struct * files = tsk->files; if (files) { task_lock(tsk); tsk->files = NULL; task_unlock(tsk); put_files_struct(files); }}void exit_files(struct task_struct *tsk){ __exit_files(tsk);}static inline void __put_fs_struct(struct fs_struct *fs){ /* No need to hold fs->lock if we are killing it */ if (atomic_dec_and_test(&fs->count)) { dput(fs->root); mntput(fs->rootmnt); dput(fs->pwd); mntput(fs->pwdmnt); if (fs->altroot) { dput(fs->altroot); mntput(fs->altrootmnt); } kmem_cache_free(fs_cachep, fs); }}void put_fs_struct(struct fs_struct *fs){ __put_fs_struct(fs);}static inline void __exit_fs(struct task_struct *tsk){ struct fs_struct * fs = tsk->fs; if (fs) { task_lock(tsk); tsk->fs = NULL; task_unlock(tsk); __put_fs_struct(fs); }}void exit_fs(struct task_struct *tsk){ __exit_fs(tsk);}/* * We can use these to temporarily drop into * "lazy TLB" mode and back. */struct mm_struct * start_lazy_tlb(void){ struct mm_struct *mm = current->mm;
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -