?? draft-ietf-manet-dsr-10.txt
字號(hào):
3. DSR Protocol Overview This section provides an overview of the operation of the DSR protocol. The basic version of DSR uses explicit "source routing", in which each data packet sent carries in its header the complete, ordered list of nodes through which the packet will pass. This use of explicit source routing allows the sender to select and control the routes used for its own packets, supports the use of multiple routes to any destination (for example, for load balancing), and allows a simple guarantee that the routes used are loop-free; by including this source route in the header of each data packet, other nodes forwarding or overhearing any of these packets can also easily cache this routing information for future use. Section 3.1 describes this basic operation of Route Discovery, Section 3.2 describes basic Route Maintenance, and Sections 3.3 and 3.4 describe additional features of these two parts of DSR's operation. Section 3.5 then describes an optional, compatible extension to DSR, known as "flow state", that allows the routing of most packets without an explicit source route header in the packet, while still preserves the fundamental properties of DSR's operation.3.1. Basic DSR Route Discovery When some source node originates a new packet addressed to some destination node, the source node places in the header of the packet a "source route" giving the sequence of hops that the packet is to follow on its way to the destination. Normally, the sender will obtain a suitable source route by searching its "Route Cache" of routes previously learned; if no route is found in its cache, it will initiate the Route Discovery protocol to dynamically find a new route to this destination node. In this case, we call the source node the "initiator" and the destination node the "target" of the Route Discovery. For example, suppose a node A is attempting to discover a route to node E. The Route Discovery initiated by node A in this example would proceed as follows: ^ "A" ^ "A,B" ^ "A,B,C" ^ "A,B,C,D" | id=2 | id=2 | id=2 | id=2 +-----+ +-----+ +-----+ +-----+ +-----+ | A |---->| B |---->| C |---->| D |---->| E | +-----+ +-----+ +-----+ +-----+ +-----+ | | | | v v v v To initiate the Route Discovery, node A transmits a "Route Request" as a single local broadcast packet, which is received by (approximately) all nodes currently within wireless transmissionJohnson, et al Expires 19 January 2005 [Page 6]INTERNET-DRAFT The Dynamic Source Routing Protocol 19 July 2004 range of A, including node B in this example. Each Route Request identifies the initiator and target of the Route Discovery, and also contains a unique request identification (2, in this example), determined by the initiator of the Request. Each Route Request also contains a record listing the address of each intermediate node through which this particular copy of the Route Request has been forwarded. This route record is initialized to an empty list by the initiator of the Route Discovery. In this example, the route record initially lists only node A. When another node receives this Route Request (such as node B in this example), if it is the target of the Route Discovery, it returns a "Route Reply" to the initiator of the Route Discovery, giving a copy of the accumulated route record from the Route Request; when the initiator receives this Route Reply, it caches this route in its Route Cache for use in sending subsequent packets to this destination. Otherwise, if this node receiving the Route Request has recently seen another Route Request message from this initiator bearing this same request identification and target address, or if this node's own address is already listed in the route record in the Route Request, this node discards the Request. (A node considers a Request recently seen if it still has information about that Request in its Route Request Table, which is described in Section 4.3.) Otherwise, this node appends its own address to the route record in the Route Request and propagates it by transmitting it as a local broadcast packet (with the same request identification). In this example, node B broadcast the Route Request, which is received by node C; nodes C and D each also, in turn, broadcast the Request, resulting in a copy of the Request being received by node E. In returning the Route Reply to the initiator of the Route Discovery, such as in this example, node E replying back to node A, node E will typically examine its own Route Cache for a route back to A, and if found, will use it for the source route for delivery of the packet containing the Route Reply. Otherwise, E SHOULD perform its own Route Discovery for target node A, but to avoid possible infinite recursion of Route Discoveries, it MUST piggyback this Route Reply on the packet containing its own Route Request for A. It is also possible to piggyback other small data packets, such as a TCP SYN packet [33], on a Route Request using this same mechanism. Node E could instead simply reverse the sequence of hops in the route record that it is trying to send in the Route Reply, and use this as the source route on the packet carrying the Route Reply itself. For MAC protocols such as IEEE 802.11 that require a bidirectional frame exchange as part of the MAC protocol [13], the discovered source route MUST be reversed in this way to return the Route Reply since it tests the discovered route to ensure it is bidirectional before theJohnson, et al Expires 19 January 2005 [Page 7]INTERNET-DRAFT The Dynamic Source Routing Protocol 19 July 2004 Route Discovery initiator begins using the route; this route reversal also avoids the overhead of a possible second Route Discovery. When initiating a Route Discovery, the sending node saves a copy of the original packet (that triggered the Discovery) in a local buffer called the "Send Buffer". The Send Buffer contains a copy of each packet that cannot be transmitted by this node because it does not yet have a source route to the packet's destination. Each packet in the Send Buffer is logically associated with the time that it was placed into the Send Buffer and is discarded after residing in the Send Buffer for some timeout period SendBufferTimeout; if necessary for preventing the Send Buffer from overflowing, a FIFO or other replacement strategy MAY also be used to evict packets even before they expire. While a packet remains in the Send Buffer, the node SHOULD occasionally initiate a new Route Discovery for the packet's destination address. However, the node MUST limit the rate at which such new Route Discoveries for the same address are initiated (as described in Section 4.3), since it is possible that the destination node is not currently reachable. In particular, due to the limited wireless transmission range and the movement of the nodes in the network, the network may at times become partitioned, meaning that there is currently no sequence of nodes through which a packet could be forwarded to reach the destination. Depending on the movement pattern and the density of nodes in the network, such network partitions may be rare or may be common. If a new Route Discovery was initiated for each packet sent by a node in such a partitioned network, a large number of unproductive Route Request packets would be propagated throughout the subset of the ad hoc network reachable from this node. In order to reduce the overhead from such Route Discoveries, a node SHOULD use an exponential back-off algorithm to limit the rate at which it initiates new Route Discoveries for the same target, doubling the timeout between each successive Discovery initiated for the same target. If the node attempts to send additional data packets to this same destination node more frequently than this limit, the subsequent packets SHOULD be buffered in the Send Buffer until a Route Reply is received giving a route to this destination, but the node MUST NOT initiate a new Route Discovery until the minimum allowable interval between new Route Discoveries for this target has been reached. This limitation on the maximum rate of Route Discoveries for the same target is similar to the mechanism required by Internet nodes to limit the rate at which ARP Requests are sent for any single target IP address [3].Johnson, et al Expires 19 January 2005 [Page 8]INTERNET-DRAFT The Dynamic Source Routing Protocol 19 July 20043.2. Basic DSR Route Maintenance When originating or forwarding a packet using a source route, each node transmitting the packet is responsible for confirming that data can flow over the link from that node to the next hop. For example, in the situation shown below, node A has originated a packet for node E using a source route through intermediate nodes B, C, and D: +-----+ +-----+ +-----+ +-----+ +-----+ | A |---->| B |---->| C |-->? | D | | E | +-----+ +-----+ +-----+ +-----+ +-----+ In this case, node A is responsible for the link from A to B, node B is responsible for the link from B to C, node C is responsible for the link from C to D, node D is responsible for the link from D to E. An acknowledgement can provide confirmation that a link is capable of carrying data, and in wireless networks, acknowledgements are often provided at no cost, either as an existing standard part of the MAC protocol in use (such as the link-layer acknowledgement frame defined by IEEE 802.11 [13]), or by a "passive acknowledgement" [18] (in which, for example, B confirms receipt at C by overhearing C transmit the packet when forwarding it on to D). If a built-in acknowledgement mechanism is not available, the node transmitting the packet can explicitly request a DSR-specific software acknowledgement be returned by the next node along the route; this software acknowledgement will normally be transmitted directly to the sending node, but if the link between these two nodes is unidirectional (Section 4.6), this software acknowledgement could travel over a different, multi-hop path. After an acknowledgement has been received from some neighbor, a node MAY choose to not require acknowledgements from that neighbor for a brief period of time, unless the network interface connecting a node to that neighbor always receives an acknowledgement in response to unicast traffic. When a software acknowledgement is used, the acknowledgement request SHOULD be retransmitted up to a maximum number of times. A retransmission of the acknowledgement request can be sent as a separate packet, piggybacked on a retransmission of the original data packet, or piggybacked on any packet with the same next-hop destination that does not also contain a software acknowledgement. After the acknowledgement request has been retransmitted the maximum number of times, if no acknowledgement has been received, then the sender treats the link to this next-hop destination as currently "broken". It SHOULD remove this link from its Route Cache and SHOULD return a "Route Error" to each node that has sent a packetJohnson, et al Expires 19 January 2005 [Page 9]INTERNET-DRAFT The Dynamic Source Routing Protocol 19 July 2004 routed over that link since an acknowledgement was last received. For example, in the situation shown above, if C does not receive an acknowledgement from D after some number of requests, it would return a Route Error to A, as well as any other node that may have used the link from C to D since C last received an acknowledgement from D. Node A then removes this broken link from its cache; any retransmission of the original packet can be performed by upper layer protocols such as TCP, if necessary. For sending such a retransmission or other packets to this same destination E, if A has in its Route Cache another route to E (for example, from additional Route Replies from its earlier Route Discovery, or from having overheard sufficient routing information from other packets), it can send the packet using the new route immediately. Otherwise, it SHOULD perform a new Route Discovery for this target (subject to the back-off described in Section 3.1).Johnson, et al Expires 19 January 2005 [Page 10]INTERNET-DRAFT The Dynamic Source Routing Protocol 19 July 2004
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -