?? dct.c
字號:
/* tmp10 through tmp13: -1024 to +1024 */ /* if I-block, then -512 to +512 */ tmp10 = tmp3 + tmp0; tmp11 = tmp2 + tmp1; tmp12 = tmp1 - tmp2; tmp13 = tmp0 - tmp3; outptr[ zigzag[0][columncounter] ] = (int32) UNFIXH((tmp10 + tmp11) * SIN_1_4); outptr[ zigzag[4][columncounter] ] = (int32) UNFIXH((tmp10 - tmp11) * COS_1_4); outptr[ zigzag[2][columncounter] ] = (int32) UNFIXH(tmp13 * COS_1_8 + tmp12 * SIN_1_8); outptr[ zigzag[6][columncounter] ] = (int32) UNFIXH(tmp13 * SIN_1_8 - tmp12 * COS_1_8); tmp16 = UNFIXO((tmp6 + tmp5) * SIN_1_4); tmp15 = UNFIXO((tmp6 - tmp5) * COS_1_4); OVERSHIFT(tmp4); OVERSHIFT(tmp7); /* * tmp4, tmp7, tmp15, tmp16 are overscaled by * OVERSCALE */ tmp14 = tmp4 + tmp15; tmp25 = tmp4 - tmp15; tmp26 = tmp7 - tmp16; tmp17 = tmp7 + tmp16; outptr[ zigzag[1][columncounter] ] = (int32) UNFIXH(tmp17 * OCOS_1_16 + tmp14 * OSIN_1_16); outptr[ zigzag[7][columncounter] ] = (int32) UNFIXH(tmp17 * OCOS_7_16 - tmp14 * OSIN_7_16); outptr[ zigzag[5][columncounter] ] = (int32) UNFIXH(tmp26 * OCOS_5_16 + tmp25 * OSIN_5_16); outptr[ zigzag[3][columncounter] ] = (int32) UNFIXH(tmp26 * OCOS_3_16 - tmp25 * OSIN_3_16); inptr += DCTSIZE; /* advance inptr to next row */ /* outptr++;*/ /* advance outptr to next column */ columncounter++; } /* END OF PASS TWO */}int Dct( int *block, int *coeff){ mp_fwd_dct_fast( *(Block *) &block[0], *(Block *) &coeff[0]); return 0; } #endif /* End of ifnotdef FASTDCT */#ifdef FASTIDCT/********************************************************************** * * Name: idct * Description: Descans zigzag-scanned coefficients and does * inverse dct on 64 coefficients * single precision floats * * Input: 64 coefficients, block for 64 pixels * Returns: 0 * Side effects: * * Date: 930128 Author: Robert.Danielsen@nta.no * **********************************************************************/int idct(int *coeff,int *block){ int j1, i, j; double b[8], b1[8], d[8][8]; double f0=.7071068, f1=.4903926, f2=.4619398, f3=.4157348; double f4=.3535534; double f5=.2777851, f6=.1913417, f7=.0975452; double e, f, g, h; /* Horizontal */ /* Descan coefficients first */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { b[j] = *( coeff + zigzag[i][j]); } e = b[1] * f7 - b[7] * f1; h = b[7] * f7 + b[1] * f1; f = b[5] * f3 - b[3] * f5; g = b[3] * f3 + b[5] * f5; b1[0] = (b[0] + b[4]) * f4; b1[1] = (b[0] - b[4]) * f4; b1[2] = b[2] * f6 - b[6] * f2; b1[3] = b[6] * f6 + b[2] * f2; b[4] = e + f; b1[5] = e - f; b1[6] = h - g; b[7] = h + g; b[5] = (b1[6] - b1[5]) * f0; b[6] = (b1[6] + b1[5]) * f0; b[0] = b1[0] + b1[3]; b[1] = b1[1] + b1[2]; b[2] = b1[1] - b1[2]; b[3] = b1[0] - b1[3]; for (j = 0; j < 4; j++) { j1 = 7 - j; d[i][j] = b[j] + b[j1]; d[i][j1] = b[j] - b[j1]; } } /* Vertical */ for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { b[j] = d[j][i]; } e = b[1] * f7 - b[7] * f1; h = b[7] * f7 + b[1] * f1; f = b[5] * f3 - b[3] * f5; g = b[3] * f3 + b[5] * f5; b1[0] = (b[0] + b[4]) * f4; b1[1] = (b[0] - b[4]) * f4; b1[2] = b[2] * f6 - b[6] * f2; b1[3] = b[6] * f6 + b[2] * f2; b[4] = e + f; b1[5] = e - f; b1[6] = h - g; b[7] = h + g; b[5] = (b1[6] - b1[5]) * f0; b[6] = (b1[6] + b1[5]) * f0; b[0] = b1[0] + b1[3]; b[1] = b1[1] + b1[2]; b[2] = b1[1] - b1[2]; b[3] = b1[0] - b1[3]; for (j = 0; j < 4; j++) { j1 = 7 - j; d[j][i] = b[j] + b[j1]; d[j1][i] = b[j] - b[j1]; } } for (i = 0; i < 8; i++) { for (j = 0; j < 8; j++) { *(block + i * 8 + j) = mnint(d[i][j]); } } return 0;}#elif VERYFASTIDCT/* * tmndecode * Copyright (C) 1995 Telenor R&D * Karl Olav Lillevold <kol@nta.no> * * based on mpeg2decode, (C) 1994, MPEG Software Simulation Group * and mpeg2play, (C) 1994 Stefan Eckart * <stefan@lis.e-technik.tu-muenchen.de> * *//**********************************************************//* inverse two dimensional DCT, Chen-Wang algorithm *//* (cf. IEEE ASSP-32, pp. 803-816, Aug. 1984) *//* 32-bit integer arithmetic (8 bit coefficients) *//* 11 mults, 29 adds per DCT *//* sE, 18.8.91 *//**********************************************************//* coefficients extended to 12 bit for IEEE1180-1990 *//* compliance sE, 2.1.94 *//**********************************************************//* this code assumes >> to be a two's-complement arithmetic *//* right shift: (-2)>>1 == -1 , (-3)>>1 == -2 */#define W1 2841 /* 2048*sqrt(2)*cos(1*pi/16) */#define W2 2676 /* 2048*sqrt(2)*cos(2*pi/16) */#define W3 2408 /* 2048*sqrt(2)*cos(3*pi/16) */#define W5 1609 /* 2048*sqrt(2)*cos(5*pi/16) */#define W6 1108 /* 2048*sqrt(2)*cos(6*pi/16) */#define W7 565 /* 2048*sqrt(2)*cos(7*pi/16) *//* private data */static int iclip[1024]; /* clipping table */static int *iclp;/* private prototypes */static void idctrow(int *blk);static void idctcol(int *blk);/* row (horizontal) IDCT * * 7 pi 1 * dst[k] = sum c[l] * src[l] * cos( -- * ( k + - ) * l ) * l=0 8 2 * * where: c[0] = 128 * c[1..7] = 128*sqrt(2) */static void idctrow(int *blk){ int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if (!((x1 = blk[4]<<11) | (x2 = blk[6]) | (x3 = blk[2]) | (x4 = blk[1]) | (x5 = blk[7]) | (x6 = blk[5]) | (x7 = blk[3]))) { blk[0]=blk[1]=blk[2]=blk[3]=blk[4]=blk[5]=blk[6]=blk[7]=blk[0]<<3; return; } x0 = (blk[0]<<11) + 128; /* for proper rounding in the fourth stage */ /* first stage */ x8 = W7*(x4+x5); x4 = x8 + (W1-W7)*x4; x5 = x8 - (W1+W7)*x5; x8 = W3*(x6+x7); x6 = x8 - (W3-W5)*x6; x7 = x8 - (W3+W5)*x7; /* second stage */ x8 = x0 + x1; x0 -= x1; x1 = W6*(x3+x2); x2 = x1 - (W2+W6)*x2; x3 = x1 + (W2-W6)*x3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; /* third stage */ x7 = x8 + x3; x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181*(x4+x5)+128)>>8; x4 = (181*(x4-x5)+128)>>8; /* fourth stage */ blk[0] = (x7+x1)>>8; blk[1] = (x3+x2)>>8; blk[2] = (x0+x4)>>8; blk[3] = (x8+x6)>>8; blk[4] = (x8-x6)>>8; blk[5] = (x0-x4)>>8; blk[6] = (x3-x2)>>8; blk[7] = (x7-x1)>>8;}/* column (vertical) IDCT * * 7 pi 1 * dst[8*k] = sum c[l] * src[8*l] * cos( -- * ( k + - ) * l ) * l=0 8 2 * * where: c[0] = 1/1024 * c[1..7] = (1/1024)*sqrt(2) */static inline static void idctcol(int *blk){ int x0, x1, x2, x3, x4, x5, x6, x7, x8; /* shortcut */ if (!((x1 = (blk[32]<<8)) | (x2 = blk[48]) | (x3 = blk[16]) | (x4 = blk[8]) | (x5 = blk[56]) | (x6 = blk[40]) | (x7 = blk[24]))) { blk[0]=blk[8]=blk[16]=blk[24]=blk[32]=blk[40]=blk[48]=blk[56]= iclp[(blk[0]+32)>>6]; return; } x0 = (blk[8*0]<<8) + 8192; /* first stage */ x8 = W7*(x4+x5) + 4; x4 = (x8+(W1-W7)*x4)>>3; x5 = (x8-(W1+W7)*x5)>>3; x8 = W3*(x6+x7) + 4; x6 = (x8-(W3-W5)*x6)>>3; x7 = (x8-(W3+W5)*x7)>>3; /* second stage */ x8 = x0 + x1; x0 -= x1; x1 = W6*(x3+x2) + 4; x2 = (x1-(W2+W6)*x2)>>3; x3 = (x1+(W2-W6)*x3)>>3; x1 = x4 + x6; x4 -= x6; x6 = x5 + x7; x5 -= x7; /* third stage */ x7 = x8 + x3; x8 -= x3; x3 = x0 + x2; x0 -= x2; x2 = (181*(x4+x5)+128)>>8; x4 = (181*(x4-x5)+128)>>8; /* fourth stage */ blk[0] = iclp[(x7+x1)>>14]; blk[8] = iclp[(x3+x2)>>14]; blk[16] = iclp[(x0+x4)>>14]; blk[24] = iclp[(x8+x6)>>14]; blk[32] = iclp[(x8-x6)>>14]; blk[40] = iclp[(x0-x4)>>14]; blk[48] = iclp[(x3-x2)>>14]; blk[56] = iclp[(x7-x1)>>14];}/* two dimensional inverse discrete cosine transform */int idct(int *coeff, int *block){ int i; extern int zigzag[8][8]; int *block_ptr, *zigzag_ptr; block_ptr = block; zigzag_ptr = &(zigzag[0][0]); for (i = 0; i < 8; i++) { *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); *(block_ptr++) = *(coeff + *(zigzag_ptr++)); /* WAS: block[j + i*8] = (int) *( coeff + zigzag[i][j]); */ } for (i=0; i<8; i++) idctrow(block+8*i); for (i=0; i<8; i++) idctcol(block+i); return 0;}
void init_idct(){ int i; iclp = iclip+512; for (i= -512; i<512; i++) iclp[i] = (i<-256) ? -256 : ((i>255) ? 255 : i);}#else/* Perform IEEE 1180 reference (64-bit floating point, separable 8x1 * direct matrix multiply) Inverse Discrete Cosine Transform*//* Here we use math.h to generate constants. Compiler results may vary a little *//* private data *//* cosine transform matrix for 8x1 IDCT */static double c[8][8];/* initialize DCT coefficient matrix */void init_idctref(){ int freq, time; double scale; for (freq=0; freq < 8; freq++) { scale = (freq == 0) ? sqrt(0.125) : 0.5; for (time=0; time<8; time++) c[freq][time] = scale*cos((PI/8.0)*freq*(time + 0.5)); }}/* perform IDCT matrix multiply for 8x8 coefficient block */void idctref(int *coeff, int *block){ int i, j, k, v; double partial_product; double tmp[64]; int tmp2[64]; extern int zigzag[8][8]; for (i=0; i<8; i++) for (j=0; j<8; j++) tmp2[j+i*8] = *(coeff + zigzag[i][j]); for (i=0; i<8; i++) for (j=0; j<8; j++) { partial_product = 0.0; for (k=0; k<8; k++) partial_product+= c[k][j]*tmp2[8*i+k]; tmp[8*i+j] = partial_product; } /* Transpose operation is integrated into address mapping by switching loop order of i and j */ for (j=0; j<8; j++) for (i=0; i<8; i++) { partial_product = 0.0; for (k=0; k<8; k++) partial_product+= c[k][i]*tmp[8*k+j]; v = floor(partial_product+0.5); block[8*i+j] = (v<-256) ? -256 : ((v>255) ? 255 : v); }}#endif
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -