亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? infrtflt.cpp

?? Bayesian Filter.貝葉斯(Bayesian)濾波器的C++類庫。包括卡爾曼濾波(kalman filter)、粒子濾波(particle filter)等。
?? CPP
字號:
/* * Bayes++ the Bayesian Filtering Library * Copyright (c) 2002 Michael Stevens * See accompanying Bayes++.htm for terms and conditions of use. * * $Header: /cvsroot/bayesclasses/Bayes++/BayesFilter/infRtFlt.cpp,v 1.27.2.2 2004/07/18 18:38:04 mistevens Exp $ * $NoKeywords: $ *//* * Information Root Filter. */#include "infRtFlt.hpp"#include "matSup.hpp"#include "uLAPACK.hpp"	// Common LAPACK interface#include <algorithm>/* Filter namespace */namespace Bayesian_filter{	using namespace Bayesian_filter_matrix;Information_root_scheme::Information_root_scheme (std::size_t x_size, std::size_t /*z_initialsize*/) :		Kalman_state_filter(x_size),		r(x_size), R(x_size,x_size)/* * Set the size of things we know about */{}Information_root_info_scheme::Information_root_info_scheme (std::size_t x_size, std::size_t z_initialsize) :		Kalman_state_filter(x_size), Information_state_filter (x_size), 		Information_root_scheme (x_size, z_initialsize){}void Information_root_scheme::init ()/* * Inialise the filter from x,X * Predcondition: *		x,X * Postcondition: *		inv(R)*inv(R)' = X is PSD *		r = R*x */{						// Information Root	Float rcond = UCfactor (R, X);	rclimit.check_PD(rcond, "Initial X not PD");	bool singular = UTinverse (R);	assert (!singular); (void)singular;						// Information Root state r=R*x	noalias(r) = prod(R,x);}void Information_root_info_scheme::init_yY ()/* * Special Initialisation directly from Information form * Predcondition: *		y,Y * Postcondition: *		R'*R = Y is PSD *		r = inv(R)'*y */{					// Temporary R Matrix for factorisation	const std::size_t n = x.size();	LTriMatrix LC(n,n);					// Information Root	Float rcond = LdLfactor (LC, Y);	rclimit.check_PD(rcond, "Initial Y not PD");	{				// Lower triangular Choleksy factor of LdL'		std::size_t i,j;		for (i = 0; i < n; ++i)		{			using namespace std;		// for sqrt			LTriMatrix::value_type sd = LC(i,i);			sd = sqrt(sd);			LC(i,i) = sd;						// Multiply columns by square of non zero diagonal. TODO use column operation			for (j = i+1; j < n; ++j)			{				LC(j,i) *= sd;			}		}	}	R = FM::trans(LC);			// R = (L*sqrt(d))'	UTriMatrix RI(n,n);	RI = R;	bool singular = UTinverse(RI);	assert (!singular); (void)singular;	noalias(r) = prod(FM::trans(RI),y);}void Information_root_scheme::update ()/* * Recompute x,X from r,R * Precondition: *		r(k|k),R(k|k) * Postcondition: *		r(k|k),R(k|k) *		x = inv(R)*r *		X = inv(R)*inv(R)' */{	UTriMatrix RI (R);	// Invert Cholesky factor	bool singular = UTinverse (RI);	if (singular)		error (Numeric_exception("R not PD"));	noalias(X) = prod_SPD(RI);		// X = RI*RI'	noalias(x) = prod(RI,r);}void Information_root_info_scheme::update_yY ()/* * Recompute y,Y from r,R * Precondition: *		r(k|k),R(k|k) * Postcondition: *		r(k|k),R(k|k) *		Y = R'*R *		y = Y*x */{	Information_root_scheme::update();	noalias(Y) = prod(trans(R),R);		// Y = R'*R	noalias(y) = prod(Y,x);}void Information_root_scheme::inverse_Fx (FM::DenseColMatrix& invFx, const FM::Matrix& Fx)/* * Numerical Inversion of Fx using LU factorisation * Required LAPACK getrf (with PIVOTING) and getrs */{								// LU factorise with pivots	DenseColMatrix FxLU (Fx);	LAPACK::pivot_t ipivot(FxLU.size1());		// Pivots initialised to zero	ipivot.clear();	int info = LAPACK::getrf(FxLU, ipivot);	if (info < 0)		error (Numeric_exception("Fx not LU factorisable"));	FM::identity(invFx);				// Invert	info = LAPACK::getrs('N', FxLU, ipivot, invFx);	if (info != 0)		error (Numeric_exception("Predict Fx not LU invertable"));}Bayes_base::Float Information_root_scheme::predict (Linrz_predict_model& f, const FM::ColMatrix& invFx, bool linear_r)/* Linrz Prediction: using precomputed inverse of f.Fx * Precondition: *   r(k|k),R(k|k) * Postcondition: *   r(k+1|k) computed using QR decomposition see Ref[1] *   R(k+1|k) * * r can be computed in two was: * Either directly in the linear form or  using extended form via R*f.f(x) * * Requires LAPACK geqrf for QR decomposition (without PIVOTING) */{	if (!linear_r)		update ();		// x is required for f(x);						// Require Root of correlated predict noise (may be semidefinite)	Matrix Gqr (f.G);	for (Vec::const_iterator qi = f.q.begin(); qi != f.q.end(); ++qi)	{		if (*qi < 0)			error (Numeric_exception("Predict q Not PSD"));		column(Gqr, qi.index()) *= std::sqrt(*qi);	}						// Form Augmented matrix for factorisation	const std::size_t x_size = x.size();	const std::size_t q_size = f.q.size();						// Column major required for LAPACK, also this property is using in indexing	DenseColMatrix A(q_size+x_size, q_size+x_size+unsigned(linear_r));	FM::identity (A);	// Prefill with identity for topleft and zero's in off diagonals	Matrix RFxI (prod(R, invFx));	A.sub_matrix(q_size,q_size+x_size, 0,q_size) .assign (prod(RFxI, Gqr));	A.sub_matrix(q_size,q_size+x_size, q_size,q_size+x_size) .assign (RFxI);	if (linear_r)		A.sub_column(q_size,q_size+x_size, q_size+x_size) .assign (r);						// Calculate factorisation so we have and upper triangular R	DenseVec tau(q_size+x_size);	int info = LAPACK::geqrf (A, tau);	if (info != 0)			error (Numeric_exception("Predict no QR factor"));						// Extract the roots, junk in strict lower triangle	R = UpperTri( A.sub_matrix(q_size,q_size+x_size, q_size,q_size+x_size) );    if (linear_r)		noalias(r) = A.sub_column(q_size,q_size+x_size, q_size+x_size);	else		noalias(r) = prod(R,f.f(x));	// compute r using f(x)	return UCrcond(R);	// compute rcond of result}Bayes_base::Float Information_root_scheme::predict (Linrz_predict_model& f)/* Linrz Prediction: computes inverse model using inverse_Fx */{						// Require inverse(Fx)	DenseColMatrix FxI(f.Fx.size1(), f.Fx.size2());	inverse_Fx (FxI, f.Fx);	return predict (f, ColMatrix(FxI), false);}Bayes_base::Float Information_root_scheme::predict (Linear_predict_model& f)/* Linear Prediction: computes inverse model using inverse_Fx */{						// Require inverse(Fx)	DenseColMatrix FxI(f.Fx.size1(), f.Fx.size2());	inverse_Fx (FxI, f.Fx);	return predict (f, ColMatrix(FxI), true);}Bayes_base::Float Information_root_scheme::observe_innovation (Linrz_correlated_observe_model& h, const FM::Vec& s)/* Extended linrz correlated observe * Precondition: *		r(k+1|k),R(k+1|k) * Postcondition: *		r(k+1|k+1),R(k+1|k+1) * * Uses LAPACK geqrf for QR decomposigtion (without PIVOTING) * ISSUE correctness of linrz form needs validation */{	const std::size_t x_size = x.size();	const std::size_t z_size = s.size();						// Size consistency, z to model	if (z_size != h.Z.size1())		error (Logic_exception("observation and model size inconsistent"));						// Require Inverse of Root of uncorrelated observe noise	UTriMatrix Zir(z_size,z_size);	Float rcond = UCfactor (Zir, h.Z);	rclimit.check_PD(rcond, "Z not PD");	bool singular = UTinverse (Zir);	assert (!singular); (void)singular;						// Form Augmented matrix for factorisation	DenseColMatrix A(x_size+z_size, x_size+1);	// Column major required for LAPACK, also this property is using in indexing	A.sub_matrix(0,x_size, 0,x_size) .assign (R);	A.sub_matrix(x_size,x_size+z_size, 0,x_size) .assign (prod(Zir, h.Hx));	A.sub_column(0,x_size, x_size) .assign (r);	A.sub_column(x_size,x_size+z_size, x_size) .assign (prod(Zir, s+prod(h.Hx,x)));						// Calculate factorisation so we have and upper triangular R	DenseVec tau(x_size+1);	int info = LAPACK::geqrf (A, tau);	if (info != 0)			error (Numeric_exception("Observe no QR factor"));						// Extract the roots, junk in strict lower triangle	noalias(R) = UpperTri( A.sub_matrix(0,x_size, 0,x_size) );	noalias(r) = A.sub_column(0,x_size, x_size);	return UCrcond(R);	// compute rcond of result}Bayes_base::Float Information_root_scheme::observe_innovation (Linrz_uncorrelated_observe_model& h, const FM::Vec& s)/* Extended linrz uncorrelated observe * Precondition: *		r(k+1|k),R(k+1|k) * Postcondition: *		r(k+1|k+1),R(k+1|k+1) * * Uses LAPACK geqrf for QR decomposigtion (without PIVOTING) * ISSUE correctness of linrz form needs validation * ISSUE Efficiency. Product of Zir can be simplified */{	const std::size_t x_size = x.size();	const std::size_t z_size = s.size();						// Size consistency, z to model	if (z_size != h.Zv.size())		error (Logic_exception("observation and model size inconsistent"));						// Require Inverse of Root of uncorrelated observe noise	DiagMatrix Zir(z_size,z_size);	Zir.clear();	for (std::size_t i = 0; i < z_size; ++i)	{		Zir(i,i) = 1 / std::sqrt(h.Zv[i]);	}						// Form Augmented matrix for factorisation	DenseColMatrix A(x_size+z_size, x_size+1);	// Column major required for LAPACK, also this property is using in indexing	A.sub_matrix(0,x_size, 0,x_size) .assign(R);	A.sub_matrix(x_size,x_size+z_size, 0,x_size) .assign (prod(Zir, h.Hx));	A.sub_column(0,x_size, x_size) .assign (r);	A.sub_column(x_size,x_size+z_size, x_size) .assign (prod(Zir, s+prod(h.Hx,x)));						// Calculate factorisation so we have and upper triangular R	DenseVec tau(x_size+1);	int info = LAPACK::geqrf (A, tau);	if (info != 0)			error (Numeric_exception("Observe no QR factor"));						// Extract the roots, junk in strict lower triangle	noalias(R) = UpperTri( A.sub_matrix(0,x_size, 0,x_size) );	noalias(r) = A.sub_column(0,x_size, x_size);	return UCrcond(R);	// compute rcond of result}}//namespace

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
在线不卡a资源高清| 色综合久久88色综合天天免费| 国产专区欧美精品| 99视频一区二区三区| 69p69国产精品| 亚洲天堂中文字幕| 极品少妇xxxx精品少妇| 欧美午夜宅男影院| 中文字幕在线不卡视频| 久久精工是国产品牌吗| 欧美少妇xxx| 国产精品理论在线观看| 精品午夜一区二区三区在线观看| 91年精品国产| 国产女人aaa级久久久级| 三级成人在线视频| 色婷婷亚洲综合| 国产午夜一区二区三区| 麻豆精品久久精品色综合| 欧美视频一区二区三区四区| 欧美韩国日本一区| 国产精一品亚洲二区在线视频| 91精品国产黑色紧身裤美女| 亚洲午夜久久久久久久久久久| 成人久久视频在线观看| 久久这里只有精品视频网| 麻豆中文一区二区| 欧美久久一二三四区| 亚洲制服丝袜一区| 色爱区综合激月婷婷| 亚洲欧美激情在线| 成人激情文学综合网| 久久久久久免费| 国产一区二区看久久| 2020日本不卡一区二区视频| 久久国产精品色婷婷| 欧美videos中文字幕| 精品综合久久久久久8888| 日韩欧美色电影| 狠狠色伊人亚洲综合成人| 精品人在线二区三区| 久久精品国产99| 国产三级一区二区| 不卡电影一区二区三区| 国产精品国产三级国产aⅴ原创 | 亚洲国产日产av| 欧美日韩美女一区二区| 日韩国产欧美在线播放| 精品久久五月天| 国产成人av电影| 1000部国产精品成人观看| 欧美性一二三区| 麻豆高清免费国产一区| 久久久99久久| 91色乱码一区二区三区| 五月激情丁香一区二区三区| 日韩久久久久久| 国产一区二区三区日韩| 亚洲欧美在线视频| 精品视频999| 国产综合久久久久影院| 国产精品国产三级国产有无不卡| 色婷婷国产精品| 日韩av网站在线观看| 久久一区二区三区四区| 91小视频免费观看| 午夜精品久久久久久久99水蜜桃| 精品精品国产高清a毛片牛牛| 播五月开心婷婷综合| 亚洲一区二区在线播放相泽| 日韩欧美国产成人一区二区| 成人免费视频一区| 亚洲午夜久久久久久久久电影院 | 久久精品国产99国产精品| 国产精品美女久久久久久久网站| 欧美曰成人黄网| 国产毛片精品视频| 亚洲成人一区在线| 国产三级精品三级| 91精选在线观看| 91网页版在线| 国产激情一区二区三区四区| 亚洲国产精品天堂| 欧美激情一二三区| 欧美成人一区二区三区片免费| 色婷婷香蕉在线一区二区| 国产一区二区三区免费在线观看| 亚洲自拍偷拍网站| 国产精品每日更新在线播放网址| 日韩一区二区三区四区五区六区| 91免费国产视频网站| 国产原创一区二区| 日本三级韩国三级欧美三级| 亚洲精品国产高清久久伦理二区| 久久精品视频在线看| 91麻豆精品国产91久久久更新时间 | 欧美成人精品1314www| 色综合咪咪久久| 成人美女视频在线观看18| 国产一区二区h| 久久国产婷婷国产香蕉| 午夜国产精品影院在线观看| 亚洲女人****多毛耸耸8| 国产视频一区不卡| 久久欧美中文字幕| 精品美女被调教视频大全网站| 9191国产精品| 欧美另类变人与禽xxxxx| 欧美色综合影院| 3d成人h动漫网站入口| 欧美色大人视频| 日本乱人伦一区| 色网站国产精品| 91黄色免费网站| 91国偷自产一区二区开放时间 | 中文字幕一区在线| 国产日韩av一区| 久久久91精品国产一区二区三区| www国产精品av| 国产亚洲综合性久久久影院| 欧美xxxxxxxx| 久久精品视频一区| 久久久久国产精品厨房| 久久久精品天堂| 欧美国产日韩在线观看| 亚洲国产精品成人综合色在线婷婷 | 欧美三区在线观看| 欧美色图在线观看| 欧美美女直播网站| 欧美一区二区三区色| 精品国产一区二区三区久久影院 | 欧美一区二区三区思思人 | 在线免费一区三区| 欧美欧美午夜aⅴ在线观看| 91精品久久久久久久久99蜜臂| 欧美一区日本一区韩国一区| 日韩精品一区二区三区swag| 久久蜜臀中文字幕| ●精品国产综合乱码久久久久| 亚洲综合色区另类av| 天天综合天天综合色| 狠狠色丁香婷婷综合| 岛国av在线一区| 在线亚洲一区观看| 日韩一区二区在线观看| 国产欧美日韩另类视频免费观看| 一区在线中文字幕| 日产国产高清一区二区三区| 国产高清精品在线| 一本大道久久a久久精品综合| 91精品国产综合久久蜜臀| 国产视频视频一区| 亚洲第一精品在线| 国产a精品视频| 欧美日韩一区二区三区视频| 久久夜色精品一区| 亚洲精品福利视频网站| 经典一区二区三区| 日本久久一区二区三区| 精品国产sm最大网站免费看| 一区二区三区在线看| 国产在线精品免费av| 欧美色图在线观看| 狠狠色综合色综合网络| 国产不卡在线视频| 欧美日韩一区二区在线观看| 久久新电视剧免费观看| 亚洲电影第三页| 国产乱人伦偷精品视频免下载| av激情成人网| 欧美xxxxx牲另类人与| 亚洲综合色视频| 国产成人午夜99999| 欧美日韩国产美| 亚洲综合色成人| 日韩欧美第一区| 欧美—级在线免费片| 亚洲免费在线看| 成人黄色av电影| 久久精品人人爽人人爽| 黄页视频在线91| 2021中文字幕一区亚洲| 国产精品99久久久久久久vr | 亚洲国产视频网站| 国产一区二区三区高清播放| 91首页免费视频| 亚洲视频一区在线| 日本乱人伦aⅴ精品| 一级日本不卡的影视| 精品88久久久久88久久久| 亚洲欧美中日韩| 国产精品99久久久| 26uuu另类欧美| 欧美aaaaa成人免费观看视频| a级高清视频欧美日韩| 日韩女同互慰一区二区| 亚洲成人动漫av| 国产成人99久久亚洲综合精品| 日韩一区二区三区精品视频| 国产高清亚洲一区|