亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? bayesflt.hpp

?? Bayesian Filter.貝葉斯(Bayesian)濾波器的C++類庫。包括卡爾曼濾波(kalman filter)、粒子濾波(particle filter)等。
?? HPP
?? 第 1 頁 / 共 2 頁
字號:
#ifndef _BAYES_FILTER#define _BAYES_FILTER/* * Bayes++ the Bayesian Filtering Library * Copyright (c) 2002 Michael Stevens * See accompanying Bayes++.htm for terms and conditions of use. * * $Header: /cvsroot/bayesclasses/Bayes++/BayesFilter/bayesFlt.hpp,v 1.24.2.3 2005/04/07 06:39:38 mistevens Exp $ * $NoKeywords: $ *//* * Bayesian filtering reresented as Dual heirarchy of: *  Prediction and Observation models *  Filtering Schemes */ // Common headers required for declerations#include "bayesException.hpp"	// exception types#include "matSupSub.hpp"			// matrix support subsystem/* Filter namespace */namespace Bayesian_filter{	// Allow use of a short name for matrix namespace	namespace FM = Bayesian_filter_matrix;/* * Abstraction support classes, at the base of the heirarchy */class Bayes_base {/* * A very abstract Polymorphic base representation! * Interface provides: type, internal error handing, and destruction */public:	typedef Bayesian_filter_matrix::Float Float;	// Type used thoughout as a number representation for state etc	virtual ~Bayes_base() = 0;	// Polymorphic	static void error (const Numeric_exception& a);	static void error (const Logic_exception& a);	// Report a filter, throw a Filter_exception	//  No exception saftey rules are specified, assume the object is invalid	// May have side effects for debuging};class Numerical_rcond/* * Numerical comparison of reciprocal condition numbers *  Required for all linear algebra in models and filters *  Implements minimum allowable reciprocal condition number for PD Matrix factorisations */{public:	Numerical_rcond()	{	limit_PD = limit_PD_init;	}	void set_limit_PD(Bayes_base::Float nl)	{	limit_PD = nl;	}	inline void check_PSD (Bayes_base::Float rcond, const char* error_description) const	/* Checks a the reciprocal condition number	 * Generates a Bayes_filter_exception if value represents a NON PSD matrix	 * Inverting condition provides a test for IEC 559 NaN values	 */	{	if (!(rcond >= 0))			Bayes_base::error (Numeric_exception (error_description));	}	inline void check_PD (Bayes_base::Float rcond, const char* error_description) const	/* Checks a reciprocal condition number	 * Generates a Bayes_filter_exception if value represents a NON PD matrix	 * I.e. rcond is bellow given conditioning limit	 * Inverting condition provides a test for IEC 559 NaN values	 */	{	if (!(rcond >= limit_PD))			Bayes_base::error (Numeric_exception (error_description));	}private:	Bayes_base::Float limit_PD;			const static Bayes_base::Float limit_PD_init;	// Initial common value for limit_PD};/* * Abstract Prediction models *  Predict models are used to parameterise predict functions of filters */class Predict_model_base : public Bayes_base{	// Empty};class Sampled_predict_model : virtual public Predict_model_base/* Sampled stochastic predict model    x*(k) = fw(x(k-1), w(k))   fw should generate samples from the stochastic variable w(k)   This fundamental model is used instead of the predict likelihood function L(x*|x)   Since drawing samples from an arbitary L is non-trivial (see MCMC theory)   the burden is place on the model to generate these samples.   Defines an Interface without data members */{public:	virtual const FM::Vec& fw(const FM::Vec& x) const = 0;	// Note: Reference return value as a speed optimisation, MUST be copied by caller.};class Functional_predict_model :virtual public Predict_model_base/* Functional (non-stochastic) predict model f    x*(k) = fx(x(k-1))   This fundamental model is used instead of the predict likelihood function L(x*|x)   Since L is a delta function which isn't much use for numerical systems.   Defines an Interface without data members */{public:	virtual const FM::Vec& fx(const FM::Vec& x) const = 0;	// Functional model	// Note: Reference return value as a speed optimisation, MUST be copied by caller.		const FM::Vec& operator()(const FM::Vec& x) const	{	// Operator form of functional model		return fx(x);	}};class Gaussian_predict_model : virtual public Predict_model_base/* Gaussian noise predict model   This fundamental noise model for linear/linearised filtering    x(k|k-1) = x(k-1|k-1)) + G(k)w(k)    G(k)w(k)    q(k) = state noise covariance, q(k) is covariance of w(k)    G(k) = state noise coupling*/{public:	Gaussian_predict_model (std::size_t x_size, std::size_t q_size);	FM::Vec q;		// Noise variance (always dense, use coupling to represent sparseness)	FM::Matrix G;		// Noise Coupling		Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Addative_predict_model : virtual public Predict_model_base/* Addative Gaussian noise predict model   This fundamental model for non-linear filtering with addative noise    x(k|k-1) = f(x(k-1|k-1)) + G(k)w(k)    q(k) = state noise covariance, q(k) is covariance of w(k)    G(k) = state noise coupling   ISSUE Should be privately derived from Gaussian_predict_model but access control in GCC is broken*/{public:	Addative_predict_model (std::size_t x_size, std::size_t q_size);	virtual const FM::Vec& f(const FM::Vec& x) const = 0;	// Functional part of addative model	// Note: Reference return value as a speed optimisation, MUST be copied by caller.	FM::Vec q;		// Noise variance (always dense, use coupling to represent sparseness)	FM::Matrix G;		// Noise Coupling	Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Linrz_predict_model : public Addative_predict_model/* Linrz predict model   This fundamental model for linear/linearised filtering    x(k|k-1) = f(x(k-1|k-1)    Fx(x(k-1|k-1) = Jacobian of of functional part fx with respect to state x */{public:	Linrz_predict_model (std::size_t x_size, std::size_t q_size);	FM::Matrix Fx;		// Model};class Linear_predict_model : public Linrz_predict_model/* Linear predict model   Enforces linearity on f    x(k|k-1) = Fx(k-1|k-1) * x(k-1|k-1) */{public:	Linear_predict_model (std::size_t x_size, std::size_t q_size);	const FM::Vec& f(const FM::Vec& x) const	{	// Provide the linear implementation of functional f		xp.assign (FM::prod(Fx,x));		return xp;	}private:	mutable FM::Vec xp;};class Linear_invertable_predict_model : public Linear_predict_model/* Linear invertable predict model   Fx has an inverse    x(k-1|k-1) = inv.Fx(k-1|k-1) * x(k|k-1) */{public:	Linear_invertable_predict_model (std::size_t x_size, std::size_t q_size);	struct inverse_model {		inverse_model (std::size_t x_size);		FM::ColMatrix Fx;	// Model inverse (ColMatrix as usually transposed)	} inv;};/* * Abstract Observation models *  Observe models are used to parameterise the observe functions of filters */class Observe_model_base : public Bayes_base{	// Empty};class Observe_function : public Bayes_base// Function object for predict of observations{public:	virtual const FM::Vec& h(const FM::Vec& x) const = 0;	// Note: Reference return value as a speed optimisation, MUST be copied by caller.};class Likelihood_observe_model : virtual public Observe_model_base/* Likelihood observe model L(z |x) *  The most fundamental Bayesian definition of an observation * Defines an Interface without data members */{public:	Likelihood_observe_model(std::size_t z_size) : z(z_size)	{}	virtual Float L(const FM::Vec& x) const = 0;	// Likelihood L(z | x)	virtual void Lz (const FM::Vec& zz)	// Set the observation zz about which to evaluate the Likelihood function	{		z = zz;	}protected:	FM::Vec z;			// z set by Lz};class Functional_observe_model : virtual public Observe_model_base, public Observe_function/* Functional (non-stochastic) observe model h *  zp(k) = hx(x(k|k-1)) * This is a seperate fundamental model and not derived from likelihood because: *  L is a delta function which isn't much use for numerical systems * Defines an Interface without data members */{public:	Functional_observe_model(std::size_t /*z_size*/)	{}	const FM::Vec& operator()(const FM::Vec& x) const	{	return h(x);	}};class Parametised_observe_model : virtual public Observe_model_base, public Observe_function/* Observation model parametised with a fixed z size *  Includes the functional part of a noise model *  Model is assume to have linear and non-linear components *  Linear components need to be checked for conditioning *  Non-linear components may be discontinous and need normalisation */{public:	Parametised_observe_model(std::size_t /*z_size*/)	{}	virtual const FM::Vec& h(const FM::Vec& x) const = 0;	// Functional part of addative model	virtual void normalise (FM::Vec& /*z_denorm*/, const FM::Vec& /*z_from*/) const	// Discontinous h. Normalise one observation (z_denorm) from another	{}	//  Default normalistion, z_denorm unchanged		Numerical_rcond rclimit;	// Reciprocal condition number limit of linear components when factorised or inverted};class Uncorrelated_addative_observe_model : public Parametised_observe_model/* Observation model, uncorrelated addative observation noise	Z(k) = I * Zv(k) observe noise variance vector Zv */{public:	Uncorrelated_addative_observe_model (std::size_t z_size) :		Parametised_observe_model(z_size), Zv(z_size)	{}	FM::Vec Zv;			// Noise Variance};class Correlated_addative_observe_model : public Parametised_observe_model/* Observation model, correlated addative observation noise    Z(k) = observe noise covariance */{public:	Correlated_addative_observe_model (std::size_t z_size) :		Parametised_observe_model(z_size), Z(z_size,z_size)	{}	FM::SymMatrix Z;	// Noise Covariance (not necessarly dense)};class Jacobian_observe_model : virtual public Observe_model_base/* Linrz observation model Hx, h about state x (fixed size)    Hx(x(k|k-1) = Jacobian of h with respect to state x	Normalisation consistency Hx: Assume normalise will be from h(x(k|k-1)) so result is consistent with Hx */{public:	FM::Matrix Hx;		// Modelprotected: // Jacobian model is not sufficient, it is used to build Linrz observe model's	Jacobian_observe_model (std::size_t x_size, std::size_t z_size) :		Hx(z_size, x_size)	{}};class Linrz_correlated_observe_model : public Correlated_addative_observe_model, public Jacobian_observe_model/* Linrz observation model Hx, h with repespect to state x (fixed size)    correlated observation noise    zp(k) = h(x(k-1|k-1)    Hx(x(k|k-1) = Jacobian of f with respect to state x    Z(k) = observe noise covariance */{public:	Linrz_correlated_observe_model (std::size_t x_size, std::size_t z_size) :		Correlated_addative_observe_model(z_size), Jacobian_observe_model(x_size, z_size)	{}};class Linrz_uncorrelated_observe_model : public Uncorrelated_addative_observe_model, public Jacobian_observe_model/* Linrz observation model Hx, h with repespect to state x (fixed size)    uncorrelated observation noise    zp(k) = h(x(k-1|k-1)    Hx(x(k|k-1) = Jacobian of f with respect to state x    Zv(k) = observe noise covariance */{public:	Linrz_uncorrelated_observe_model (std::size_t x_size, std::size_t z_size) :		Uncorrelated_addative_observe_model(z_size), Jacobian_observe_model(x_size, z_size)	{}};

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国产精品久久久久婷婷二区次| 亚洲综合免费观看高清完整版 | 久久久久久久久蜜桃| 国产精品黄色在线观看| 日韩av中文字幕一区二区| 国产成人无遮挡在线视频| 欧美三级电影在线看| 中文字幕的久久| 男人的j进女人的j一区| 91久久线看在观草草青青| 久久久久久99久久久精品网站| 五月开心婷婷久久| 欧美午夜视频网站| 中文成人av在线| 国产精品538一区二区在线| 欧美一区二区三区思思人| 亚洲精品欧美综合四区| 成人精品国产一区二区4080| 精品成人a区在线观看| 日本色综合中文字幕| 欧美日韩国产123区| 一区二区在线看| 日本精品视频一区二区| 亚洲人一二三区| 成人免费黄色大片| 欧美国产综合色视频| 国产成人综合在线| 久久天天做天天爱综合色| 蜜桃av噜噜一区二区三区小说| 欧美亚洲禁片免费| 亚洲一区二区精品3399| 一本色道**综合亚洲精品蜜桃冫| 久久久久久亚洲综合| 国产精品一区二区在线观看网站| 26uuu精品一区二区在线观看| 久久国产精品免费| 精品88久久久久88久久久| 久久99精品国产麻豆婷婷洗澡| 69av一区二区三区| 老色鬼精品视频在线观看播放| 欧美成人三级在线| 国产精品一区二区果冻传媒| 国产欧美日本一区二区三区| 成人理论电影网| 亚洲另类中文字| 欧美日韩国产精品成人| 久久精品国产77777蜜臀| 2020国产精品| 成人亚洲精品久久久久软件| 国产精品少妇自拍| 在线观看日韩高清av| 亚洲r级在线视频| 欧美va天堂va视频va在线| 国产精品一区二区三区99| 亚洲欧洲无码一区二区三区| 91福利国产精品| 日韩精品一二三四| 日韩欧美国产系列| 国产一区二区视频在线播放| 国产精品伦理一区二区| 日本久久一区二区| 老色鬼精品视频在线观看播放| 久久久噜噜噜久噜久久综合| 一本在线高清不卡dvd| 丝袜美腿高跟呻吟高潮一区| 2024国产精品视频| 在线免费观看日本一区| 免费在线观看日韩欧美| 国产日韩欧美一区二区三区乱码 | 亚洲电影在线免费观看| 欧美成人一区二区三区在线观看| 成人黄色软件下载| 日韩电影免费一区| 国产精品天干天干在观线| 欧美色区777第一页| 国产乱人伦精品一区二区在线观看| 亚洲欧洲精品一区二区三区 | 欧美成人三级在线| kk眼镜猥琐国模调教系列一区二区| 亚洲伦理在线免费看| 久久久国产精品麻豆| 欧美日韩午夜精品| 国产suv精品一区二区6| 日韩中文字幕亚洲一区二区va在线| 国产欧美va欧美不卡在线| 欧美精品电影在线播放| 丁香婷婷深情五月亚洲| 蜜臀国产一区二区三区在线播放| 亚洲丝袜精品丝袜在线| 国产亚洲欧美色| 欧美一级搡bbbb搡bbbb| 色成人在线视频| 国产aⅴ综合色| 极品销魂美女一区二区三区| 亚洲国产精品久久久男人的天堂| 欧美高清在线一区| 精品国产人成亚洲区| 欧美日韩国产乱码电影| 欧洲亚洲国产日韩| 91视视频在线直接观看在线看网页在线看 | 日韩一级成人av| 96av麻豆蜜桃一区二区| 国产精选一区二区三区| 免费成人在线观看视频| 亚洲一级在线观看| 亚洲精品国产一区二区三区四区在线| 精品国产91亚洲一区二区三区婷婷| 欧美日韩一区在线观看| 在线区一区二视频| 欧美性猛片xxxx免费看久爱| 91色综合久久久久婷婷| 99精品欧美一区二区三区综合在线| 国模冰冰炮一区二区| 蜜桃av噜噜一区| 狠狠v欧美v日韩v亚洲ⅴ| 精品一区二区综合| 久久精品国产秦先生| 久久精品久久久精品美女| 蜜臂av日日欢夜夜爽一区| 日本不卡视频在线观看| 日韩黄色片在线观看| 日韩精品欧美精品| 秋霞午夜鲁丝一区二区老狼| 日韩av成人高清| 久久精品噜噜噜成人av农村| 激情六月婷婷久久| 韩国精品免费视频| 成人三级伦理片| 在线视频国产一区| 69久久夜色精品国产69蝌蚪网| 91精品国产丝袜白色高跟鞋| 欧美一区二区三区人| 日韩午夜激情免费电影| 26uuu精品一区二区在线观看| 国产亚洲一本大道中文在线| 中文字幕亚洲区| 丝袜国产日韩另类美女| 久久99国产精品成人| 国产成a人亚洲精品| 91色在线porny| 欧美一区二区三区性视频| 久久中文字幕电影| 亚洲日本在线a| 日韩精品久久理论片| 狠狠v欧美v日韩v亚洲ⅴ| 99久久免费国产| 欧美精品久久一区二区三区| 国产亚洲成年网址在线观看| 综合久久久久久| 日本不卡的三区四区五区| 国产乱子轮精品视频| 99精品国产91久久久久久| 欧美精品久久久久久久多人混战| 久久久777精品电影网影网| 亚洲精选一二三| 久久成人av少妇免费| zzijzzij亚洲日本少妇熟睡| 欧美精品v国产精品v日韩精品| 久久久久久久性| 午夜视频一区在线观看| 大白屁股一区二区视频| 欧美人狂配大交3d怪物一区| 国产片一区二区| 日韩精品一二区| 91在线观看下载| 欧美成人一区二区三区在线观看| 国产精品久久三区| 老司机午夜精品| 91丨porny丨蝌蚪视频| 精品国产区一区| 亚洲成人动漫av| 91毛片在线观看| 久久精品一区二区三区不卡| 日韩中文字幕av电影| 一本到不卡免费一区二区| 久久精品亚洲麻豆av一区二区| 亚洲韩国一区二区三区| 成人妖精视频yjsp地址| 欧美电影免费观看高清完整版在线 | 欧美色精品在线视频| 国产精品免费久久| 精品一区二区三区免费毛片爱| 欧美亚洲国产一区二区三区va | 欧美精品久久久久久久多人混战| 中文字幕一区在线| 国产成人亚洲综合a∨婷婷图片| 日韩一区二区在线观看| 亚洲图片欧美综合| 欧美性一级生活| 一区二区三区电影在线播| 大桥未久av一区二区三区中文| 久久久亚洲高清| 经典三级在线一区| 精品国一区二区三区| 久久精品免费观看| 精品国产百合女同互慰| 免费高清成人在线| 日韩免费视频一区二区| 免费视频最近日韩| 欧美第一区第二区|