亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? udu.cpp

?? Bayesian Filter.貝葉斯(Bayesian)濾波器的C++類庫。包括卡爾曼濾波(kalman filter)、粒子濾波(particle filter)等。
?? CPP
?? 第 1 頁 / 共 2 頁
字號:
}RowMatrix::value_type UdUfactor (RowMatrix& UD, const SymMatrix& M)/* * Modified upper triangular Cholesky factor of a * Positive definate or Semi-definate Matrix M * Wraps UdUfactor for non in place factorisation * Output: *    UD the UdU' factorisation of M with strict lower triangle zero * Return: *    see in-place UdUfactor */{	noalias(UD) = M;	RowMatrix::value_type rcond = UdUfactor (UD, M.size1());	Lzero (UD);	// Zero lower triangle ignored by UdUfactor	return rcond;}LTriMatrix::value_type LdLfactor (LTriMatrix& LD, const SymMatrix& M)/* * Modified lower triangular Cholesky factor of a * Positive definate or Semi-definate Matrix M * Wraps LdLfactor for non in place factorisation * Output: *    LD the LdL' factorisation of M * Return: *    see in-place LdLfactor */{	noalias(LD) = M;	LTriMatrix::value_type rcond = LdLfactor (LD, M.size1());	return rcond;}UTriMatrix::value_type UCfactor (UTriMatrix& UC, const SymMatrix& M)/* * Upper triangular Cholesky factor of a * Positive definate or Semi-definate Matrix M * Wraps UCfactor for non in place factorisation * Output: *    UC the UC*UC' factorisation of M * Return: *    see in-place UCfactor */{	noalias(UC) = UpperTri(M);	UTriMatrix::value_type rcond = UCfactor (UC, UC.size1());	return rcond;}bool UdUinverse (RowMatrix& UD)/* * In-place (destructive) inversion of diagonal and unit upper triangular matrices in UD * BE VERY CAREFUL THIS IS NOT THE INVERSE OF UD *  Inversion on d and U is seperate: inv(U)*inv(d)*inv(U') = inv(U'dU) NOT EQUAL inv(UdU') * Lower triangle of UD is ignored and unmodified * Only diagonal part d can be singular (zero elements), inverse is computed of all elements other then singular * Reference: A+G p.223 * * Output: *    UD: inv(U), inv(d) * Return: *    singularity (of d), true iff d has a zero element */{	std::size_t i,j,k;	const std::size_t n = UD.size1();	assert (n == UD.size2());	// Invert U in place	if (n > 1)	{		i = n-2;		do {			RowMatrix::Row UDi(UD,i);			for (j = n-1; j > i; --j)			{				RowMatrix::value_type UDij = - UDi[j];				for (k = i+1; k < j; ++k)					UDij -= UDi[k] * UD(k,j);				UDi[j] = UDij;			}		} while (i-- > 0);	}	// Invert d in place	bool singular = false;	for (i = 0; i < n; ++i)	{		// Detect singular element		if (UD(i,i) != 0)			UD(i,i) = Float(1) / UD(i,i);		else			singular = true;	}	return singular;}bool UTinverse (UTriMatrix& U)/* * In-place (destructive) inversion of upper triangular matrix in U * * Output: *    U: inv(U) * Return: *    singularity (of U), true iff diagonal of U has a zero element */{	const std::size_t n = U.size1();	assert (n == U.size2());	bool singular = false;	// Invert U in place	if (n > 0)	{		std::size_t i = n-1;		do {			UTriMatrix::Row Ui(U,i);			UTriMatrix::value_type d = Ui[i];			if (d == 0)			{				singular = true;				break;			}			d = 1/d;			Ui[i] = d;			for (std::size_t j = n-1; j > i; --j)			{				UTriMatrix::value_type e = 0.;				for (std::size_t k = i+1; k <= j; ++k)					e -= Ui[k] * U(k,j);				Ui[j] = e*d;			}		} while (i-- > 0);	}	return singular;}void UdUrecompose_transpose (RowMatrix& M)/* * In-place recomposition of Symmetric matrix from U'dU factor store in UD format *  Generally used for recomposing result of UdUinverse * Note definateness of result depends purely on diagonal(M) *  i.e. if d is positive definate (>0) then result is positive definate * Reference: A+G p.223 * In place computation uses simple structure of solution due to triangular zero elements *  Defn: R = (U' d) row i , C = U column j   -> M(i,j) = R dot C; *  However M(i,j) only dependant R(k<=i), C(k<=j) due to zeros *  Therefore in place multiple sequences such k < i <= j * Input: *    M - U'dU factorisation (UD format) * Output: *    M - U'dU recomposition (symmetric) */{	std::size_t i,j,k;	const std::size_t n = M.size1();	assert (n == M.size2());	// Recompose M = (U'dU) in place	if (n > 0)	{		i = n-1;		do {			RowMatrix::Row Mi(M,i);			// (U' d) row i of lower triangle from upper trinagle			for (j = 0; j < i; ++j)				Mi[j] = M(j,i) * M(j,j);			// (U' d) U in place			j = n-1;			do { // j>=i				// Compute matrix product (U'd) row i * U col j				RowMatrix::value_type Mij = Mi[j];				if (j > i)					// Optimised handling of 1 in U					Mij *= Mi[i];				for (k = 0; k < i; ++k)		// Inner loop k < i <=j, only strict triangular elements					Mij += Mi[k] * M(k,j);		// M(i,k) element of U'd, M(k,j) element of U				M(j,i) = Mi[j] = Mij;			} while (j-- > i);		} while (i-- > 0);	}}void UdUrecompose (RowMatrix& M)/* * In-place recomposition of Symmetric matrix from UdU' factor store in UD format *  See UdUrecompose_transpose() * Input: *    M - UdU' factorisation (UD format) * Output: *    M - UdU' recomposition (symmetric) */{	std::size_t i,j,k;	const std::size_t n = M.size1();	assert (n == M.size2());	// Recompose M = (UdU') in place	for (i = 0; i < n; ++i)	{		RowMatrix::Row Mi(M,i);		// (d U') col i of lower triangle from upper trinagle		for (j = i+1; j < n; ++j) {			RowMatrix::Row Mj(M,j);			Mj[i] = M(i,j) * Mj[j];		}		// U (d U') in place		for (j = 0; j <= i; ++j)	// j<=i		{			// Compute matrix product (U'd) row i * U col j			RowMatrix::value_type Mij = Mi[j];			if (j > i)					// Optimised handling of 1 in U				Mij *= Mi[i];			for (k = i+1; k < n; ++k)		// Inner loop k > i >=j, only strict triangular elements				Mij += Mi[k] * M(k,j);		// M(i,k) element of U'd, M(k,j) element of U			M(j,i) = Mi[j] = Mij;		}	}}void Lzero (RowMatrix& M)/* * Zero strict lower triangle of Matrix */{	std::size_t i,j;	const std::size_t n = M.size1();	assert (n == M.size2());	for (i = 1; i < n; ++i)	{		RowMatrix::Row Ui(M,i);		for (j = 0; j < i; ++j)		{			Ui[j] = 0;		}	}}void Uzero (RowMatrix& M)/* * Zero strict upper triangle of Matrix */{	std::size_t i,j;	const std::size_t n = M.size1();	assert (n == M.size2());	for (i = 0; i < n; ++i)	{		RowMatrix::Row Li(M,i);		for (j = i+1; j < n; ++j)		{			Li[j] = 0;		}	}}void UdUfromUCholesky (RowMatrix& U)/* * Convert a normal upper triangular Cholesky factor into * a Modified Cholesky factor. * Lower triangle of UD is ignored and unmodified * Ignores Columns with zero diagonal element *  Correct for zero columns i.e. UD is Cholesky factor of a PSD Matrix * Note: There is no inverse to this function toCholesky as square losses the sign * * Input: *    U Normal Cholesky factor (Upper triangular) * Output: *    U Modified Cholesky factor (UD format) */{	std::size_t i,j;	const std::size_t n = U.size1();	assert (n == U.size2());	for (j = 0; j < n; ++j)	{		RowMatrix::value_type sd = U(j,j);		U(j,j) = sd*sd;					// Devide columns by square of non zero diagonal		if (sd != 0)		{			for (i = 0; i < j; ++i)			{				U(i,j) /= sd;			}		}	}}void UdUseperate (RowMatrix& U, Vec& d, const RowMatrix& UD)/* * Extract the seperate U and d parts of the UD factorisation * Output: *    U and d parts of UD */{	std::size_t i,j;	const std::size_t n = UD.size1();	assert (n == UD.size2());	for (j = 0; j < n; ++j)	{					// Extract d and set diagonal to 1		d[j] = UD(j,j);		RowMatrix::Row Uj(U,j);		Uj[j] = 1;		for (i = 0; i < j; ++i)		{			U(i,j) = UD(i,j);			// Zero lower triangle of U			Uj[i] = 0;		}	}}/* * Function built using UdU factorisation */void UdUrecompose (SymMatrix& X, const RowMatrix& M){						// Abuse X as a RowMatrix	RowMatrix& X_matrix = X.asRowMatrix();		// assign elements of common top left block of R into L	std::size_t top = std::min(X_matrix.size1(), M.size1());	std::size_t left = std::min(X_matrix.size2(), M.size2());	X_matrix.sub_matrix(0,top, 0,left) .assign (M.sub_matrix(0,top, 0,left));	UdUrecompose (X_matrix);}SymMatrix::value_type UdUinversePDignoreInfinity (SymMatrix& M)/* * inverse of Positive Definate matrix * The inverse is able to deal with infinities on the leading diagonal * Input: *     M is a symmetric matrix * Output: *     M inverse of M, only updated if return value >0 * Return: *     reciprocal condition number, -1 if negative, 0 if semi-definate (including zero) */{					// Abuse as a RowMatrix	RowMatrix& M_matrix = M.asRowMatrix();					// Must use variant1, variant2 cannot deal with infinity	SymMatrix::value_type orig_rcond = UdUfactor_variant1 (M_matrix, M_matrix.size1());					// Ignore the normal rcond and recompute ingnoring infinites	SymMatrix::value_type rcond = rcond_ignore_infinity_internal (diag(M_matrix));	assert (rcond == orig_rcond || orig_rcond == 0); (void)orig_rcond;	// Only invert and recompose if PD	if (rcond > 0) {		bool singular = UdUinverse (M_matrix);		assert (!singular); (void)singular;		UdUrecompose_transpose (M_matrix);	}	return rcond;}SymMatrix::value_type UdUinversePD (SymMatrix& M)/* * inverse of Positive Definate matrix * Input: *     M is a symmetric matrix * Output: *     M inverse of M, only updated if return value >0 * Return: *     reciprocal condition number, -1 if negative, 0 if semi-definate (including zero) */{					// Abuse as a RowMatrix	RowMatrix& M_matrix = M.asRowMatrix();	SymMatrix::value_type rcond = UdUfactor (M_matrix, M_matrix.size1());	// Only invert and recompose if PD	if (rcond > 0) {		bool singular = UdUinverse (M_matrix);		assert (!singular); (void)singular;		UdUrecompose_transpose (M_matrix);	}	return rcond;}SymMatrix::value_type UdUinversePD (SymMatrix& M, SymMatrix::value_type& detM)/* * As above but also computes determinant of original M if M is PSD */{					// Abuse as a RowMatrix	RowMatrix& M_matrix = M.asRowMatrix();	SymMatrix::value_type rcond = UdUfactor (M_matrix, M_matrix.size1());	// Only invert and recompose if PD	if (rcond > 0) {		detM = UdUdet(M_matrix);		bool singular = UdUinverse (M_matrix);		assert (!singular); (void)singular;		UdUrecompose_transpose (M_matrix);	}	return rcond;}SymMatrix::value_type UdUinversePD (SymMatrix& MI, const SymMatrix& M)/* * inverse of Positive Definate matrix * Input: *    M is a symmetric matrix * Output: *    MI inverse of M, only valid if return value >0 * Return: *    reciprocal condition number, -1 if negative, 0 if semi-definate (including zero) */{	MI = M;					// Abuse as a RowMatrix	RowMatrix& MI_matrix = MI.asRowMatrix();	SymMatrix::value_type rcond = UdUfactor (MI_matrix, MI_matrix.size1());	// Only invert and recompose if PD	if (rcond > 0) {		bool singular = UdUinverse (MI_matrix);		assert (!singular); (void)singular;		UdUrecompose_transpose (MI_matrix);	}	return rcond;}SymMatrix::value_type UdUinversePD (SymMatrix& MI, SymMatrix::value_type& detM, const SymMatrix& M)/* * As above but also computes determinant of original M if M is PSD */{	MI = M;					// Abuse as a RowMatrix	RowMatrix& MI_matrix = MI.asRowMatrix();	SymMatrix::value_type rcond = UdUfactor (MI_matrix, MI_matrix.size1());	if (rcond >= 0) {		detM = UdUdet (MI_matrix);					// Only invert and recompose if PD		if (rcond > 0) {			detM = UdUdet (MI_matrix);			bool singular = UdUinverse (MI_matrix);			assert (!singular); (void)singular;			UdUrecompose_transpose (MI_matrix);		}	}	return rcond;}}//namespace

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蜜臀精品久久久久久蜜臀| 中文字幕av一区二区三区高| 亚洲高清一区二区三区| 一本色道久久加勒比精品| 尤物在线观看一区| 欧美日本不卡视频| 精品一区二区综合| 欧美日韩精品高清| 激情欧美一区二区三区在线观看| 久久久精品国产免大香伊 | 日韩va欧美va亚洲va久久| 3d成人h动漫网站入口| 免费的国产精品| 久久精品一二三| 91网页版在线| 日韩精品亚洲专区| 中文字幕精品—区二区四季| 亚洲综合丝袜美腿| 国产女主播一区| 麻豆精品在线视频| 中文字幕第一页久久| 日本道免费精品一区二区三区| 丝袜a∨在线一区二区三区不卡| 亚洲高清视频的网址| 欧美大片拔萝卜| 成人午夜看片网址| 日日夜夜精品视频免费| 中文字幕免费在线观看视频一区| 色综合久久综合网欧美综合网| 丝袜美腿高跟呻吟高潮一区| 中文字幕不卡的av| 日韩欧美在线网站| 色哟哟在线观看一区二区三区| 日韩高清一级片| 国产精品乱码一区二区三区软件| 91麻豆精品国产自产在线| 国产成人精品午夜视频免费| 午夜精品久久久久久久久| 日本一区二区三区久久久久久久久不 | 欧美自拍偷拍一区| 精品一区二区日韩| 亚洲美女免费视频| 久久―日本道色综合久久| 色乱码一区二区三区88| 国产精品69久久久久水密桃| 亚洲国产成人av网| 最新热久久免费视频| 精品国产伦一区二区三区观看方式 | 久久av中文字幕片| 有码一区二区三区| 国产精品久久久久久久久图文区| 欧美日韩高清不卡| 91视频国产观看| 男女男精品视频网| 一级日本不卡的影视| 国产精品 日产精品 欧美精品| 国产欧美日韩视频在线观看| 国内久久精品视频| 91亚洲精品乱码久久久久久蜜桃| 亚洲精品久久嫩草网站秘色| 久久久综合九色合综国产精品| 欧美日韩国产免费| 91浏览器在线视频| 99国产精品国产精品久久| 国产在线视频一区二区三区| 奇米影视7777精品一区二区| 亚洲国产美国国产综合一区二区| 日韩美女视频19| 中文字幕乱码日本亚洲一区二区| 久久九九全国免费| 久久蜜臀中文字幕| 久久一区二区视频| wwwwxxxxx欧美| 久久中文娱乐网| 久久久久久影视| 国产亚洲欧美日韩在线一区| 欧美三级日韩三级国产三级| 欧美成人a在线| 在线播放欧美女士性生活| 欧美性色综合网| 在线观看成人小视频| 在线观看欧美精品| 欧美三级资源在线| 欧美猛男超大videosgay| 欧美日韩在线亚洲一区蜜芽| 欧美精品在线视频| 日韩欧美在线观看一区二区三区| 精品少妇一区二区| 久久久99免费| 国产精品久久久久三级| 亚洲免费在线播放| 丝袜诱惑亚洲看片| 国产在线精品一区二区| 国产91精品露脸国语对白| 成人福利视频在线看| 在线免费观看日本欧美| 欧美日韩高清不卡| 亚洲午夜免费电影| 蜜臀久久99精品久久久画质超高清 | 洋洋成人永久网站入口| 亚洲国产视频a| 美女视频黄久久| 国产精品一卡二卡| 色噜噜夜夜夜综合网| 欧美人妇做爰xxxⅹ性高电影| 日韩精品中文字幕在线一区| 久久久久久麻豆| 亚洲综合成人在线| 老司机精品视频在线| 99热99精品| 欧美精品久久99久久在免费线| 欧美sm极限捆绑bd| 亚洲欧美电影一区二区| 日本aⅴ免费视频一区二区三区| 国产精品1区2区3区| 欧美无砖砖区免费| 精品久久久久久久一区二区蜜臀| 国产精品久久福利| 亚洲1区2区3区视频| 国产不卡视频一区| 欧美日高清视频| 国产精品女同互慰在线看| 日韩国产一区二| av一区二区三区四区| 欧美一区二区三区白人| 国产精品国产三级国产三级人妇| 日韩制服丝袜av| av电影在线观看不卡| 欧美成人午夜电影| 一区二区三区毛片| 国产成人午夜电影网| 欧美伦理影视网| 国产精品少妇自拍| 麻豆91免费看| 欧美亚洲愉拍一区二区| 亚洲国产精品激情在线观看| 美女视频黄a大片欧美| 在线一区二区三区| 国产精品你懂的| 国产精品小仙女| 日韩一区二区电影网| 亚洲激情图片小说视频| 成人免费毛片片v| 日韩精品中文字幕在线不卡尤物| 亚洲夂夂婷婷色拍ww47| 成人97人人超碰人人99| 久久久久国产精品人| 久久福利资源站| 欧美一级国产精品| 午夜精品久久久| 欧美性生活大片视频| 亚洲激情五月婷婷| 91毛片在线观看| 国产精品高清亚洲| 成人av电影在线| 国产精品国产a级| 99精品视频在线观看免费| 国产日韩精品一区二区浪潮av| 精品一区二区三区视频在线观看| 欧美色涩在线第一页| 一区二区三区电影在线播| 99久久精品国产精品久久| 日本一区二区久久| 国产99精品在线观看| 久久久精品人体av艺术| 福利电影一区二区| 国产精品国产三级国产专播品爱网 | 欧美影视一区二区三区| 一区二区成人在线| 在线观看亚洲一区| 午夜精品一区二区三区电影天堂 | 激情综合色播激情啊| 日韩一区二区免费在线电影| 免费视频一区二区| 日韩精品一区国产麻豆| 久久99国产精品久久| 久久精品夜色噜噜亚洲a∨| 国产大陆精品国产| 亚洲色图一区二区三区| 日本高清无吗v一区| 亚洲va国产天堂va久久en| 91麻豆精品国产91久久久 | 国产一区二区三区在线观看精品| 欧美成人乱码一区二区三区| 国内精品视频一区二区三区八戒 | 国产精品美女久久久久aⅴ国产馆| 国产精品456| 亚洲精品第1页| 日韩限制级电影在线观看| 狠狠网亚洲精品| 国产精品国产三级国产aⅴ原创| jvid福利写真一区二区三区| 夜夜爽夜夜爽精品视频| 欧美一区二区三区四区在线观看 | 中文字幕一区二区三区不卡在线 | 美女一区二区在线观看| 精品国产电影一区二区| 丰满少妇在线播放bd日韩电影| 亚洲少妇最新在线视频| 欧美日韩视频第一区|