亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? readme

?? 聚類算法全集以及內附數據集
??
字號:
mcli/mclx/mcle/cli/clx/cle - probabilistic and fuzzy clusteringThis file provides some explanations on how to use the programs mcli,mclx, mcle, cli, clx, cle to induce, execute and evaluate a set ofclusters. However, it does not explain all options of these programs.For a list of options, call mcli, mclx, mcle, cli, clx, and cle withoutany arguments.Enjoy,Christian Borgelte-mail: borgelt@iws.cs.uni-magdeburg.deWWW:    http://fuzzy.cs.uni-magdeburg.de/~borgelt------------------------------------------------------------------------In this directory (cluster/ex) you can find the well-known iris data(measurements of the sepal length / width and the petal length / widthof three types of iris flowers) in formats suitable for the clusteringprograms. There are two versions: a matrix version iris.pat, whichcontains only a matrix of numbers, and a table version iris.tab, whichcontains column names and an additional column with the iris typeinformation.The matrix version can be processed with the programs mcli and mclx.To induce a set of three clusters with the fuzzy c-means algorithm, type  mcli -c3 iris.pat iris.clsThe option -c3 instructs the program to find three clusters. iris.patis the input file containing the data, iris.cls the output file towhich  a description of the clusters will be written. The result ofthis program call should look like this (contents of iris.cls):  function = cauchy(2,0);  normmode = sum1;  params = {{ [-1.00478, 0.846484, -1.28465, -1.23865] },            { [-0.0383645, -0.818721, 0.32297, 0.232151] },            { [1.06925, 0.0374249, 0.970174, 1.02979] }};  scales = [5.84333, 1.21168], [3.05733, 2.30197],           [3.758, 0.568374],  [1.19933, 1.31632];The first line states the membership function used (it is the same forall clusters). In this case it is the (generalized) Cauchy function  f(d) = 1/(d^a +b),where d is the distance from the cluster center, with parameters a = 2and b = 0. That is, the (unnormalized) degree of membership is computedas the inverse squared distance from the cluster center. An alternativeis the (generalized) Gaussian function  f(d) = exp(-0.5 *d^a),which can be selected with the option -G.The second line states the normalization mode for the membershipdegrees. Here it is "sum1", which means that the membership degreesare scaled in such a way that they sum up to 1.The line starting with "params" and the two lines following it specifythe cluster parameters, which in this case (fuzzy c-means algorithm)are the coordinates of the cluster centers. Each section enclosed incurly braces specifies the center of one cluster.The last two lines specify the scaling parameters (offset and scalingfactor), which describe how the input data are scaled in order toachieve a distribution with mean 0 and variance 1 in each dimension.The reason for this scaling is to avoid a distortion of the clusteringresult due to considerably different ranges of values in the inputdimensions.If such a normalization is not desired, it can be switched off withthe option -q. For example  mcli -qc3 iris.pat iris.cls(note how several options can be combined) yields  function = cauchy(2,0);  normmode = sum1;  params = {{ [5.00397, 3.41409, 1.48282, 0.253546] },            { [5.88893, 2.76107, 4.36395, 1.39732] },            { [6.77501, 3.05238, 5.64678, 2.05355] }};  scales = [0, 1], [0, 1], [0, 1], [0, 1];Here the scaling parameters all specify the identity function, so thatthe clustering algorithm is executed directly in the input space.The induced set of clusters can than be executed on the data in orderto compute the membership degrees for the different data points. Thisis done with the program mclx. For example,  mclx iris.cls iris.pat iris.outcreates a table iris.out, which contains three additional columns -one for each cluster. These columns hold the degrees of membership,rounded to two decimal places. (If a higher (or lower) accuracy isdesired, the output format of the membership degrees can be changedwith the option -o.)If only the cluster with the highest degree of membership is desired,one may use the option -c, which produces only one additional columncontaining the index of the cluster with the highest degree ofmembership. To this another column, containing the membership degreefor this cluster, may be added with the option -m.The programs cli and clx perform exactly the same tasks as the programsmcli and mclx, only on a different input format, namely the format ofthe file iris.tab. This format is processed in connection with a domaindescription file (here: iris.dom) that specifies which columns are tobe used and the data types of these columns. In this way it is possibleto execute the clustering algorithm on a subset of the attributeswithout changing the data file. It is also possible to handle symbolicattributes, which are coded by a simple 1-in-n code before they arepresented to the clustering algorithm. As a consequence, the output ofthe program cli contains (compared to the output of the program mcli)an additional section stating the domain information for the attributes.Both programs, mcli as well as cli, are highly parameterizable, sothat a large variety of clustering algorithms can be carried out.Here is a list of some options that lead to well-known algorithms:options     algorithm-jhard      hard  c-means algorithmnone        fuzzy c-means algorithm-v          axes-parallel Gustafson-Kessel algorithm-V          general       Gustafson-Kessel algorithm-wvG        axes-parallel Gath-Geva (FMLE) algorithm-wVG        general       Gath-Geva (FMLE) algorithm-wvGNx1     axes-parallel mixture of Gaussians (EM algorithm)-wVGNx1     general       mixture of Gaussians (EM algorithm)Explanation of the individual options:-j#      membership normalization mode-v       adaptable variances-V       adaptable covariances (covariance matrix)-Z       adaptable cluster sizes-w       adaptable weights/prior probabilities-G       Gaussian radial function (default: Cauchy function)-N       normalize to unit integral (probability density)-x       exponent for pattern weightIt is usually advisable to initialize the higher algorithms (likeGustafson-Kessel and Gath-Geva) with a few epochs of the fuzzy c-meansalgorithm. This can be achieved by exploiting that the programs mcliand cli can read in a clustering result. That is, by a call like  mcli -OV iris.pat iris.gk iris.clsthe fuzzy c-means result obtained with the program call stated above(stored in iris.cls) is further processed with the Gustafson-Kesselalgorithm. The result is written to the file iris.gk. The option -Ois necessary to overwrite the cluster type and radial functionparameters read from the input file with the command line values.The shape and size regularization options (-H and -R) are describedbriefly in the file ../doc/regular.tex

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
蜜臀av性久久久久蜜臀aⅴ四虎 | 欧美在线制服丝袜| 欧美国产日本韩| 国产乱码精品一区二区三区忘忧草 | 精品国产乱子伦一区| 亚洲人成小说网站色在线| 色哟哟一区二区在线观看 | 天天操天天综合网| 欧美一级欧美三级在线观看| 美国十次了思思久久精品导航| 日韩你懂的在线观看| 国产精品主播直播| 一区二区三区在线视频观看58| 欧美日韩精品一区二区三区四区| 日韩高清一级片| 久久久久久99久久久精品网站| 成人免费看黄yyy456| 亚洲一区二区三区小说| 日韩写真欧美这视频| 丁香亚洲综合激情啪啪综合| 亚洲裸体xxx| 51午夜精品国产| 粉嫩av亚洲一区二区图片| 亚洲人成网站影音先锋播放| 91精品在线观看入口| 成人福利视频在线| 午夜精品久久久| 国产人伦精品一区二区| 欧美曰成人黄网| 国产乱码精品一区二区三区av | 亚洲第一狼人社区| 久久久久88色偷偷免费| 欧美日精品一区视频| 国产91丝袜在线观看| 爽爽淫人综合网网站| 国产精品网站在线观看| 欧美高清你懂得| 成人av网址在线| 毛片不卡一区二区| 夜夜嗨av一区二区三区网页| 久久九九国产精品| 欧美一区二区女人| 色婷婷久久久久swag精品 | 国产成a人无v码亚洲福利| 午夜视频久久久久久| 亚洲人被黑人高潮完整版| 精品久久久久久久人人人人传媒 | 婷婷国产在线综合| 亚洲欧洲三级电影| 久久精品男人的天堂| 欧美日本不卡视频| 91欧美一区二区| 国产成都精品91一区二区三| 美日韩一区二区| 欧美成人三级在线| 极品少妇一区二区三区精品视频| 樱桃国产成人精品视频| 国产精品毛片大码女人| 久久先锋资源网| 欧美一卡二卡三卡| 欧美日韩激情一区二区| 在线看国产日韩| 成人永久看片免费视频天堂| 国产精品一区二区男女羞羞无遮挡| 日韩福利视频导航| 午夜精品免费在线观看| 日本免费在线视频不卡一不卡二| 亚洲欧美一区二区三区久本道91| 国产欧美一二三区| 久久久精品免费网站| 日韩一卡二卡三卡四卡| 在线播放欧美女士性生活| 欧美日韩五月天| 欧美性色黄大片手机版| 欧美日韩一区精品| 欧美丝袜丝交足nylons图片| 91久久精品一区二区三| 欧美性色综合网| 欧美日本一道本| 日韩欧美二区三区| 久久综合国产精品| 国产清纯白嫩初高生在线观看91| 国产日韩精品一区二区浪潮av| 久久日韩精品一区二区五区| 久久影院视频免费| 久久综合狠狠综合久久激情| 国产视频一区在线播放| 欧美国产精品专区| 亚洲视频在线一区观看| 一区二区在线观看视频| 亚洲国产日韩a在线播放| 婷婷丁香激情综合| 韩国v欧美v亚洲v日本v| 国产v日产∨综合v精品视频| av电影一区二区| 欧美三级中文字幕| 精品久久一区二区| 国产精品久久毛片av大全日韩| 亚洲欧美日本在线| 午夜精品视频在线观看| 经典一区二区三区| 成人app软件下载大全免费| 91久久奴性调教| 91精品国产aⅴ一区二区| 精品国产网站在线观看| 国产精品每日更新在线播放网址| 中文字幕中文字幕一区二区| 亚洲一区欧美一区| 麻豆精品在线播放| 国产乱码精品一区二区三| 91丨porny丨最新| 91精品国产手机| 欧美激情在线一区二区三区| 一区二区三区中文在线| 蜜乳av一区二区| av日韩在线网站| 日韩视频免费观看高清完整版| 中文在线资源观看网站视频免费不卡| 亚洲免费伊人电影| 玖玖九九国产精品| 色综合中文字幕国产| 日韩欧美国产一区在线观看| **欧美大码日韩| 蜜乳av一区二区三区| 色哟哟一区二区在线观看| 2020国产精品久久精品美国| 一区二区三区精品在线观看| 激情文学综合丁香| 欧美日韩国产综合久久| 国产精品美女久久久久久久 | 偷拍一区二区三区四区| 国产精品一区免费在线观看| 欧美系列亚洲系列| 中文字幕国产精品一区二区| 免费人成黄页网站在线一区二区 | 捆绑调教美女网站视频一区| 一本到三区不卡视频| 久久久不卡网国产精品二区| 婷婷久久综合九色综合伊人色| 97久久超碰国产精品电影| 久久综合丝袜日本网| 天堂午夜影视日韩欧美一区二区| 99精品国产91久久久久久| 久久一区二区三区四区| 日韩高清不卡一区二区| 欧美日韩高清一区二区| 一区二区三区在线视频免费观看| 粉嫩av一区二区三区粉嫩| 久久久久久99久久久精品网站| 日韩av中文字幕一区二区三区| 日韩三级视频在线看| 亚洲午夜免费电影| 91国在线观看| 亚洲精品第1页| 一本色道久久综合精品竹菊| 国产精品久久久久久妇女6080| 国产suv精品一区二区三区| 久久久一区二区三区捆绑**| 国内外精品视频| 久久综合成人精品亚洲另类欧美 | 国产一区二区免费视频| 8v天堂国产在线一区二区| 亚洲bt欧美bt精品777| 欧美性欧美巨大黑白大战| 亚洲一区二区三区在线看| 色婷婷亚洲一区二区三区| 亚洲激情校园春色| 91高清视频免费看| 午夜精品aaa| 欧美精品视频www在线观看| 亚欧色一区w666天堂| 911国产精品| 久久国产精品72免费观看| 日韩欧美成人激情| 国产一区二区三区日韩| 久久蜜桃av一区二区天堂| 国产 日韩 欧美大片| 欧美国产日韩a欧美在线观看| 波多野结衣精品在线| 一二三四社区欧美黄| 欧美精品粉嫩高潮一区二区| 日韩精品一级中文字幕精品视频免费观看| 精品视频一区二区不卡| 亚洲成人av一区二区| 精品欧美一区二区三区精品久久 | 亚洲免费资源在线播放| 在线亚洲免费视频| 亚欧色一区w666天堂| 欧美白人最猛性xxxxx69交| 国内不卡的二区三区中文字幕| 国产欧美日韩亚州综合| 91在线视频网址| 五月婷婷激情综合| 欧美videos中文字幕| 成人av综合在线| 调教+趴+乳夹+国产+精品| 久久久久久久久久久久久久久99 | 日韩黄色免费电影| 久久青草欧美一区二区三区| 99久久免费视频.com|