亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? expectation-maximization algorithm.htm

?? 這個書很重要 可以好好幫助 不信你可以下來看看 真的很好 看看哦
?? HTM
?? 第 1 頁 / 共 3 頁
字號:
?<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd">
<!-- saved from url=(0041)http://en.wikipedia.org/wiki/Em_algorithm -->
<HTML lang=en dir=ltr xml:lang="en" 
xmlns="http://www.w3.org/1999/xhtml"><HEAD><TITLE>Expectation-maximization algorithm - Wikipedia, the free encyclopedia</TITLE>
<META http-equiv=Content-Type content="text/html; charset=utf-8">
<META 
content="Expectation-maximization algorithm,Algorithm,Baum-Welch algorithm,Bayes' theorem,Closed form,Computer vision,Computing,Conditional distribution,Conditional expectation,Conjugate gradient,Data clustering" 
name=keywords><LINK href="/favicon.ico" rel="shortcut icon"><LINK 
title="Wikipedia (English)" href="/w/opensearch_desc.php" 
type=application/opensearchdescription+xml rel=search><LINK 
href="http://www.gnu.org/copyleft/fdl.html" rel=copyright>
<STYLE type=text/css media=screen,projection>@import url( /skins-1.5/monobook/main.css?13 );
</STYLE>
<LINK media=print 
href="Expectation-maximization algorithm.files/commonPrint.css" type=text/css 
rel=stylesheet><!--[if lt IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE50Fixes.css?13";</style><![endif]--><!--[if IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE55Fixes.css?13";</style><![endif]--><!--[if IE 6]>
<STYLE type=text/css>@import url( /skins-1.5/monobook/IE60Fixes.css?13 );
</STYLE>
<![endif]--><!--[if IE 7]><style type="text/css">@import "/skins-1.5/monobook/IE70Fixes.css?13";</style><![endif]--><!--[if lt IE 7]>
<SCRIPT src="Expectation-maximization algorithm.files/IEFixes.js" 
type=text/javascript></SCRIPT>

<META http-equiv=imagetoolbar content=no><![endif]-->
<SCRIPT type=text/javascript>			var skin = "monobook";			var stylepath = "/skins-1.5";			var wgArticlePath = "/wiki/$1";			var wgScriptPath = "/w";			var wgServer = "http://en.wikipedia.org";                        			var wgCanonicalNamespace = "";			var wgNamespaceNumber = 0;			var wgPageName = "Expectation-maximization_algorithm";			var wgTitle = "Expectation-maximization algorithm";			var wgArticleId = 470752;			var wgIsArticle = true;                        			var wgUserName = null;			var wgUserLanguage = "en";			var wgContentLanguage = "en";		</SCRIPT>

<SCRIPT src="Expectation-maximization algorithm.files/wikibits.js" 
type=text/javascript><!-- wikibits js --></SCRIPT>

<SCRIPT 
src="C:\Documents and Settings\admin\桌面\EM\Expectation-maximization algorithm.files\index(2).php" 
type=text/javascript><!-- site js --></SCRIPT>

<STYLE type=text/css>@import url( /w/index.php?title=MediaWiki:Common.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400 );
@import url( /w/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400 );
@import url( /w/index.php?title=-&action=raw&gen=css&maxage=2678400 );
</STYLE>
<!-- Head Scripts -->
<SCRIPT src="Expectation-maximization algorithm.files/ajax.js" 
type=text/javascript></SCRIPT>

<META content="MSHTML 6.00.2800.1491" name=GENERATOR></HEAD>
<BODY class="mediawiki ns-0 ltr">
<DIV id=globalWrapper>
<DIV id=column-content>
<DIV id=content><A id=top name=top></A>
<DIV id=siteNotice>
<DIV style="FONT-SIZE: 80%; TEXT-ALIGN: right">Your <B><A class=extiw 
title=wikimedia:Fundraising 
href="http://wikimediafoundation.org/wiki/Fundraising">continued 
donations</A></B> keep Wikipedia running!&nbsp;&nbsp;&nbsp;&nbsp;</DIV></DIV>
<H1 class=firstHeading>Expectation-maximization algorithm</H1>
<DIV id=bodyContent>
<H3 id=siteSub>From Wikipedia, the free encyclopedia</H3>
<DIV id=contentSub>(Redirected from <A title="Em algorithm" 
href="http://en.wikipedia.org/w/index.php?title=Em_algorithm&amp;redirect=no">Em 
algorithm</A>)</DIV>
<DIV id=jump-to-nav>Jump to: <A 
href="http://en.wikipedia.org/wiki/Em_algorithm#column-one">navigation</A>, <A 
href="http://en.wikipedia.org/wiki/Em_algorithm#searchInput">search</A></DIV><!-- start content -->
<P>In <A title=Statistics 
href="http://en.wikipedia.org/wiki/Statistics">statistical</A> <A 
title=Computing href="http://en.wikipedia.org/wiki/Computing">computing</A>, an 
<B>expectation-maximization (EM) algorithm</B> is an <A title=Algorithm 
href="http://en.wikipedia.org/wiki/Algorithm">algorithm</A> for finding <A 
title="Maximum likelihood" 
href="http://en.wikipedia.org/wiki/Maximum_likelihood">maximum likelihood</A> 
estimates of <A title=Parameter 
href="http://en.wikipedia.org/wiki/Parameter">parameters</A> in <A 
title=Probability 
href="http://en.wikipedia.org/wiki/Probability">probabilistic</A> models, where 
the model depends on unobserved <A title="Latent variable" 
href="http://en.wikipedia.org/wiki/Latent_variable">latent variables</A>. EM is 
frequently used for <A title="Data clustering" 
href="http://en.wikipedia.org/wiki/Data_clustering">data clustering</A> in <A 
title="Machine learning" 
href="http://en.wikipedia.org/wiki/Machine_learning">machine learning</A> and <A 
title="Computer vision" 
href="http://en.wikipedia.org/wiki/Computer_vision">computer vision</A>. EM 
alternates between performing an expectation (E) step, which computes an 
expectation of the likelihood by including the latent variables as if they were 
observed, and a maximization (M) step, which computes the maximum likelihood 
estimates of the parameters by maximizing the expected likelihood found on the E 
step. The parameters found on the M step are then used to begin another E step, 
and the process is repeated:</P>
<DL>
  <DD>i=0, t<SUB>i</SUB>=[arbitrary] 
  <DD>REPEAT 
  <DD>{ 
  <DL>
    <DD>compute Q(t|t<SUB>i</SUB>) 
    <DD>find t<SUB>i+1</SUB> such as Q(t|t<SUB>i+1</SUB>) = <IMG class=tex 
    alt="max_{t_i} Q(t|t_i)" 
    src="Expectation-maximization algorithm.files/bad3d04987de6b75fcf9cd66dfb521b4.png"> 

    <DD>IF (t<SUB>i</SUB>&nbsp;!= t<SUB>i+1</SUB>) 
    <DL>
      <DD>t<SUB>i</SUB> = t<SUB>i+1</SUB> </DD></DL>
    <DD>ELSE 
    <DL>
      <DD>FINISH </DD></DL></DD></DL>
  <DD>} </DD></DL>
<TABLE class=toc id=toc summary=Contents>
  <TBODY>
  <TR>
    <TD>
      <DIV id=toctitle>
      <H2>Contents</H2></DIV>
      <UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Specification_of_the_EM_procedure"><SPAN 
        class=tocnumber>1</SPAN> <SPAN class=toctext>Specification of the EM 
        procedure</SPAN></A> 
        <UL>
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Estimate_unobservable_data"><SPAN 
          class=tocnumber>1.1</SPAN> <SPAN class=toctext>Estimate unobservable 
          data</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Maximize_expected_log-likelihood_for_the_complete_dataset"><SPAN 
          class=tocnumber>1.2</SPAN> <SPAN class=toctext>Maximize expected 
          log-likelihood for the complete dataset</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Properties"><SPAN 
          class=tocnumber>1.3</SPAN> <SPAN class=toctext>Properties</SPAN></A> 
          </LI></UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Incremental_versions"><SPAN 
        class=tocnumber>2</SPAN> <SPAN class=toctext>Incremental 
        versions</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Relation_to_variational_Bayes_methods"><SPAN 
        class=tocnumber>3</SPAN> <SPAN class=toctext>Relation to variational 
        Bayes methods</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Example:_Mixture_Gaussian"><SPAN 
        class=tocnumber>4</SPAN> <SPAN class=toctext>Example: Mixture 
        Gaussian</SPAN></A> 
        <UL>
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#E-step:"><SPAN 
          class=tocnumber>4.1</SPAN> <SPAN class=toctext>E-step:</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#M-step"><SPAN 
          class=tocnumber>4.2</SPAN> <SPAN class=toctext>M-step</SPAN></A> 
        </LI></UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#References"><SPAN 
        class=tocnumber>5</SPAN> <SPAN class=toctext>References</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#See_also"><SPAN 
        class=tocnumber>6</SPAN> <SPAN class=toctext>See also</SPAN></A> 
    </LI></UL></TD></TR></TBODY></TABLE>
<P>
<SCRIPT type=text/javascript>//<![CDATA[ if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } //]]></SCRIPT>
</P>
<DIV class=editsection style="FLOAT: right; MARGIN-LEFT: 5px">[<A 
title="Edit section: Specification of the EM procedure" 
href="http://en.wikipedia.org/w/index.php?title=Expectation-maximization_algorithm&amp;action=edit&amp;section=1">edit</A>]</DIV>
<P><A id=Specification_of_the_EM_procedure 
name=Specification_of_the_EM_procedure></A></P>
<H2>Specification of the EM procedure</H2>
<P>Let <IMG class=tex alt=\textbf{y} 
src="Expectation-maximization algorithm.files/ff58c8e0e55b508d25fa7aff97d497b1.png"> 
denote incomplete data consisting of values of observable variables and <IMG 
class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
the missing data. Together, <IMG class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
and <IMG class=tex alt=\textbf{y} 
src="Expectation-maximization algorithm.files/ff58c8e0e55b508d25fa7aff97d497b1.png"> 
form the complete data. <IMG class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
can either be actual missing measurement or a hidden variable that would make 
the problem easier if its value would be known. For instance, in <A 
title="Mixture model" href="http://en.wikipedia.org/wiki/Mixture_model">mixture 
models</A>, the likelihood formula would be much more convenient if mixture 
components that "generated" the samples would be known (see example below).</P>
<DIV class=editsection style="FLOAT: right; MARGIN-LEFT: 5px">[<A 
title="Edit section: Estimate unobservable data" 
href="http://en.wikipedia.org/w/index.php?title=Expectation-maximization_algorithm&amp;action=edit&amp;section=2">edit</A>]</DIV>
<P><A id=Estimate_unobservable_data name=Estimate_unobservable_data></A></P>
<H3>Estimate unobservable data</H3>
<P>Let <IMG class=tex alt=p\, 
src="Expectation-maximization algorithm.files/5a34bb082daf037b3c4b14c13af6855b.png"> 
be the joint <A title="Probability distribution function" 
href="http://en.wikipedia.org/wiki/Probability_distribution_function">probability 
distribution</A> (continuous case) or <A title="Probability mass function" 
href="http://en.wikipedia.org/wiki/Probability_mass_function">probability mass 
function</A> (discrete case) of the complete data with parameters given by the 
vector <SPAN class=texhtml>θ</SPAN>: <IMG class=tex 
alt="p( \mathbf y, \mathbf x | \theta)" 
src="Expectation-maximization algorithm.files/e8761ada1a3ed08273a0b5659a07de7a.png">. 
This function then also gives the complete data <A title=Likelihood 
href="http://en.wikipedia.org/wiki/Likelihood">likelihood</A>. Further, note 
that the <A title="Conditional distribution" 
href="http://en.wikipedia.org/wiki/Conditional_distribution">conditional 
distribution</A> of the missing data given the observed can be expressed as:</P>
<DL>
  <DD><IMG class=tex 
  alt="p(\mathbf x |\mathbf y, \theta) = \frac{p(\mathbf y, \mathbf x | \theta)}{p(\mathbf y | \theta)} = \frac{p(\mathbf y|\mathbf x, \theta) p(\mathbf x |\theta) }{\int p(\mathbf y|\mathbf x, \theta) p(\mathbf x |\theta) d\mathbf x}" 
  src="Expectation-maximization algorithm.files/0d42ab25f9928bd7659e6b2f6d4d2f82.png"> 
  </DD></DL>
<P>when using the <A title="Bayes' theorem" 
href="http://en.wikipedia.org/wiki/Bayes'_theorem">Bayes rule</A> and <A 
title="Law of total probability" 
href="http://en.wikipedia.org/wiki/Law_of_total_probability">law of total 
probability</A>. This formulation only requires knowledge of the observation 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
国内精品国产成人国产三级粉色 | 国产欧美精品一区| 国产.欧美.日韩| 亚洲国产色一区| 欧美激情一区二区三区不卡 | 在线播放中文字幕一区| 国产乱码字幕精品高清av| 亚洲影院久久精品| 国产精品女上位| 日韩欧美一二三区| 欧美主播一区二区三区| 成人午夜激情视频| 国产一区二区三区在线观看精品 | 成人动漫一区二区三区| 老司机精品视频导航| 亚洲成人av资源| 一区二区三区四区激情| 中文字幕一区二区5566日韩| 精品国精品自拍自在线| 3d动漫精品啪啪1区2区免费 | 国产三级精品三级在线专区| 欧美精品少妇一区二区三区| 亚洲欧美日韩一区二区| 69av一区二区三区| 丝袜美腿亚洲色图| 久久精品夜夜夜夜久久| 日韩激情一二三区| 日韩欧美国产电影| 色网综合在线观看| 91麻豆精品91久久久久同性| 久88久久88久久久| 国产精品久久夜| 99国产精品久久久久| 国产美女视频91| 男女男精品视频| 美国十次了思思久久精品导航| 午夜婷婷国产麻豆精品| 亚洲成av人片一区二区| 一级日本不卡的影视| 一区二区三区日韩欧美精品| 亚洲日本成人在线观看| 亚洲欧美日韩电影| 亚洲欧美电影院| 亚洲欧美aⅴ...| 7777精品伊人久久久大香线蕉的 | 日本怡春院一区二区| 亚洲人成精品久久久久久| 欧美亚洲自拍偷拍| 国产在线一区二区综合免费视频| 亚洲视频一二三区| 欧美国产成人精品| 337p亚洲精品色噜噜| fc2成人免费人成在线观看播放| 九九**精品视频免费播放| 欧美唯美清纯偷拍| 精品国产乱码久久久久久久久| 欧美男男青年gay1069videost| 激情国产一区二区| 亚洲成av人影院| 亚洲一区二区视频| 亚洲美女在线一区| 亚洲免费观看高清完整| 国产精品免费看片| 日本一区二区视频在线观看| 成人av免费观看| 国产精品综合av一区二区国产馆| 免费久久精品视频| 麻豆视频一区二区| 久久精品国产精品亚洲综合| 麻豆国产一区二区| 国产精品一区二区在线观看网站| 精品一区二区三区免费| 久久99久久久久| 国产一区 二区| 在线观看欧美黄色| 欧美日韩亚洲丝袜制服| 久久99精品久久久久| 欧美视频精品在线观看| 欧美日韩亚洲综合一区二区三区| 国产精品亚洲第一区在线暖暖韩国| 精品一区二区成人精品| 国模冰冰炮一区二区| 中文字幕欧美区| 欧美丝袜丝交足nylons图片| 欧美巨大另类极品videosbest | 99久久精品情趣| 成人午夜精品在线| 91片黄在线观看| 成人小视频在线观看| 精品国产免费人成在线观看| 亚洲精品福利视频网站| 欧美日韩卡一卡二| 国产精品123| 五月开心婷婷久久| 中文字幕色av一区二区三区| 夜夜精品视频一区二区| 欧美性猛交xxxx乱大交退制版| 欧美在线观看视频一区二区 | 亚洲男人的天堂在线aⅴ视频| 色88888久久久久久影院野外| 日韩精品乱码av一区二区| 久久综合给合久久狠狠狠97色69| 国产成人精品aa毛片| 天堂va蜜桃一区二区三区| 久久九九国产精品| 北条麻妃一区二区三区| 日韩欧美中文字幕制服| 视频一区视频二区中文字幕| 成人一级视频在线观看| 日韩片之四级片| 国产麻豆日韩欧美久久| 国产精品家庭影院| 一区二区三区不卡在线观看| 美女视频免费一区| 91豆麻精品91久久久久久| 国产亚洲人成网站| 2021久久国产精品不只是精品| 亚洲男人电影天堂| 成人一区二区三区视频在线观看| 2023国产一二三区日本精品2022| 日韩激情视频在线观看| 欧美日韩亚洲综合一区| 一区2区3区在线看| 91福利视频网站| 一区二区三区精密机械公司| www..com久久爱| 国产精品欧美一级免费| 国产精一区二区三区| 久久亚洲免费视频| 国产一区二区免费在线| 日韩欧美色电影| 免费观看成人鲁鲁鲁鲁鲁视频| 99久久精品国产一区二区三区| 亚洲v中文字幕| 久久久久久久久久电影| 日韩精品中文字幕一区| 国产成人综合自拍| 亚洲婷婷在线视频| 欧美一卡二卡在线| 成人av网站免费观看| 亚洲精品乱码久久久久久日本蜜臀| 国产亚洲一本大道中文在线| 国产精品不卡一区| 国产不卡高清在线观看视频| 国产欧美精品一区二区色综合 | 欧美在线一区二区| 另类小说综合欧美亚洲| 精品婷婷伊人一区三区三| 欧美视频第二页| 久久99日本精品| 国产一区二区不卡在线| 欧美日韩美少妇 | 中文av一区二区| 欧美日本高清视频在线观看| 成人综合婷婷国产精品久久蜜臀 | 不卡视频一二三四| 美女脱光内衣内裤视频久久影院| 国产精品久久久久久福利一牛影视 | 国产精品久久久久9999吃药| 色哟哟在线观看一区二区三区| 不卡一卡二卡三乱码免费网站| 成人在线一区二区三区| 奇米777欧美一区二区| 一区二区三区在线播放| 日韩美女主播在线视频一区二区三区| 久久午夜色播影院免费高清| 666欧美在线视频| 在线观看国产日韩| 欧美日韩黄视频| 日韩你懂的电影在线观看| 欧美日韩成人在线| 91精品国产乱| 欧美日韩一区二区三区视频| 一本一道波多野结衣一区二区| 欧美大白屁股肥臀xxxxxx| 国产一区二三区好的| 亚洲欧美一区二区三区久本道91| 欧美乱妇一区二区三区不卡视频| 国产乱码精品一区二区三| 亚洲精选视频在线| 日韩视频在线永久播放| 暴力调教一区二区三区| 亚洲va韩国va欧美va精品| 国产亚洲综合色| 欧美日韩亚洲另类| 国产**成人网毛片九色| 婷婷六月综合亚洲| 中文字幕乱码久久午夜不卡| 欧美三级三级三级| 国产成人av一区| 日韩电影免费在线看| 亚洲免费观看高清| 国产欧美综合在线| 欧美日韩免费视频| www.亚洲色图.com| 国产精品一区免费在线观看| 亚洲成人自拍偷拍| 亚洲人成人一区二区在线观看| 久久精品综合网| 欧美一级日韩免费不卡|