亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? expectation-maximization algorithm.htm

?? 這個書很重要 可以好好幫助 不信你可以下來看看 真的很好 看看哦
?? HTM
?? 第 1 頁 / 共 3 頁
字號:
?<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3c.org/TR/1999/REC-html401-19991224/loose.dtd">
<!-- saved from url=(0041)http://en.wikipedia.org/wiki/Em_algorithm -->
<HTML lang=en dir=ltr xml:lang="en" 
xmlns="http://www.w3.org/1999/xhtml"><HEAD><TITLE>Expectation-maximization algorithm - Wikipedia, the free encyclopedia</TITLE>
<META http-equiv=Content-Type content="text/html; charset=utf-8">
<META 
content="Expectation-maximization algorithm,Algorithm,Baum-Welch algorithm,Bayes' theorem,Closed form,Computer vision,Computing,Conditional distribution,Conditional expectation,Conjugate gradient,Data clustering" 
name=keywords><LINK href="/favicon.ico" rel="shortcut icon"><LINK 
title="Wikipedia (English)" href="/w/opensearch_desc.php" 
type=application/opensearchdescription+xml rel=search><LINK 
href="http://www.gnu.org/copyleft/fdl.html" rel=copyright>
<STYLE type=text/css media=screen,projection>@import url( /skins-1.5/monobook/main.css?13 );
</STYLE>
<LINK media=print 
href="Expectation-maximization algorithm.files/commonPrint.css" type=text/css 
rel=stylesheet><!--[if lt IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE50Fixes.css?13";</style><![endif]--><!--[if IE 5.5000]><style type="text/css">@import "/skins-1.5/monobook/IE55Fixes.css?13";</style><![endif]--><!--[if IE 6]>
<STYLE type=text/css>@import url( /skins-1.5/monobook/IE60Fixes.css?13 );
</STYLE>
<![endif]--><!--[if IE 7]><style type="text/css">@import "/skins-1.5/monobook/IE70Fixes.css?13";</style><![endif]--><!--[if lt IE 7]>
<SCRIPT src="Expectation-maximization algorithm.files/IEFixes.js" 
type=text/javascript></SCRIPT>

<META http-equiv=imagetoolbar content=no><![endif]-->
<SCRIPT type=text/javascript>			var skin = "monobook";			var stylepath = "/skins-1.5";			var wgArticlePath = "/wiki/$1";			var wgScriptPath = "/w";			var wgServer = "http://en.wikipedia.org";                        			var wgCanonicalNamespace = "";			var wgNamespaceNumber = 0;			var wgPageName = "Expectation-maximization_algorithm";			var wgTitle = "Expectation-maximization algorithm";			var wgArticleId = 470752;			var wgIsArticle = true;                        			var wgUserName = null;			var wgUserLanguage = "en";			var wgContentLanguage = "en";		</SCRIPT>

<SCRIPT src="Expectation-maximization algorithm.files/wikibits.js" 
type=text/javascript><!-- wikibits js --></SCRIPT>

<SCRIPT 
src="C:\Documents and Settings\admin\桌面\EM\Expectation-maximization algorithm.files\index(2).php" 
type=text/javascript><!-- site js --></SCRIPT>

<STYLE type=text/css>@import url( /w/index.php?title=MediaWiki:Common.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400 );
@import url( /w/index.php?title=MediaWiki:Monobook.css&usemsgcache=yes&action=raw&ctype=text/css&smaxage=2678400 );
@import url( /w/index.php?title=-&action=raw&gen=css&maxage=2678400 );
</STYLE>
<!-- Head Scripts -->
<SCRIPT src="Expectation-maximization algorithm.files/ajax.js" 
type=text/javascript></SCRIPT>

<META content="MSHTML 6.00.2800.1491" name=GENERATOR></HEAD>
<BODY class="mediawiki ns-0 ltr">
<DIV id=globalWrapper>
<DIV id=column-content>
<DIV id=content><A id=top name=top></A>
<DIV id=siteNotice>
<DIV style="FONT-SIZE: 80%; TEXT-ALIGN: right">Your <B><A class=extiw 
title=wikimedia:Fundraising 
href="http://wikimediafoundation.org/wiki/Fundraising">continued 
donations</A></B> keep Wikipedia running!&nbsp;&nbsp;&nbsp;&nbsp;</DIV></DIV>
<H1 class=firstHeading>Expectation-maximization algorithm</H1>
<DIV id=bodyContent>
<H3 id=siteSub>From Wikipedia, the free encyclopedia</H3>
<DIV id=contentSub>(Redirected from <A title="Em algorithm" 
href="http://en.wikipedia.org/w/index.php?title=Em_algorithm&amp;redirect=no">Em 
algorithm</A>)</DIV>
<DIV id=jump-to-nav>Jump to: <A 
href="http://en.wikipedia.org/wiki/Em_algorithm#column-one">navigation</A>, <A 
href="http://en.wikipedia.org/wiki/Em_algorithm#searchInput">search</A></DIV><!-- start content -->
<P>In <A title=Statistics 
href="http://en.wikipedia.org/wiki/Statistics">statistical</A> <A 
title=Computing href="http://en.wikipedia.org/wiki/Computing">computing</A>, an 
<B>expectation-maximization (EM) algorithm</B> is an <A title=Algorithm 
href="http://en.wikipedia.org/wiki/Algorithm">algorithm</A> for finding <A 
title="Maximum likelihood" 
href="http://en.wikipedia.org/wiki/Maximum_likelihood">maximum likelihood</A> 
estimates of <A title=Parameter 
href="http://en.wikipedia.org/wiki/Parameter">parameters</A> in <A 
title=Probability 
href="http://en.wikipedia.org/wiki/Probability">probabilistic</A> models, where 
the model depends on unobserved <A title="Latent variable" 
href="http://en.wikipedia.org/wiki/Latent_variable">latent variables</A>. EM is 
frequently used for <A title="Data clustering" 
href="http://en.wikipedia.org/wiki/Data_clustering">data clustering</A> in <A 
title="Machine learning" 
href="http://en.wikipedia.org/wiki/Machine_learning">machine learning</A> and <A 
title="Computer vision" 
href="http://en.wikipedia.org/wiki/Computer_vision">computer vision</A>. EM 
alternates between performing an expectation (E) step, which computes an 
expectation of the likelihood by including the latent variables as if they were 
observed, and a maximization (M) step, which computes the maximum likelihood 
estimates of the parameters by maximizing the expected likelihood found on the E 
step. The parameters found on the M step are then used to begin another E step, 
and the process is repeated:</P>
<DL>
  <DD>i=0, t<SUB>i</SUB>=[arbitrary] 
  <DD>REPEAT 
  <DD>{ 
  <DL>
    <DD>compute Q(t|t<SUB>i</SUB>) 
    <DD>find t<SUB>i+1</SUB> such as Q(t|t<SUB>i+1</SUB>) = <IMG class=tex 
    alt="max_{t_i} Q(t|t_i)" 
    src="Expectation-maximization algorithm.files/bad3d04987de6b75fcf9cd66dfb521b4.png"> 

    <DD>IF (t<SUB>i</SUB>&nbsp;!= t<SUB>i+1</SUB>) 
    <DL>
      <DD>t<SUB>i</SUB> = t<SUB>i+1</SUB> </DD></DL>
    <DD>ELSE 
    <DL>
      <DD>FINISH </DD></DL></DD></DL>
  <DD>} </DD></DL>
<TABLE class=toc id=toc summary=Contents>
  <TBODY>
  <TR>
    <TD>
      <DIV id=toctitle>
      <H2>Contents</H2></DIV>
      <UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Specification_of_the_EM_procedure"><SPAN 
        class=tocnumber>1</SPAN> <SPAN class=toctext>Specification of the EM 
        procedure</SPAN></A> 
        <UL>
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Estimate_unobservable_data"><SPAN 
          class=tocnumber>1.1</SPAN> <SPAN class=toctext>Estimate unobservable 
          data</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Maximize_expected_log-likelihood_for_the_complete_dataset"><SPAN 
          class=tocnumber>1.2</SPAN> <SPAN class=toctext>Maximize expected 
          log-likelihood for the complete dataset</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#Properties"><SPAN 
          class=tocnumber>1.3</SPAN> <SPAN class=toctext>Properties</SPAN></A> 
          </LI></UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Incremental_versions"><SPAN 
        class=tocnumber>2</SPAN> <SPAN class=toctext>Incremental 
        versions</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Relation_to_variational_Bayes_methods"><SPAN 
        class=tocnumber>3</SPAN> <SPAN class=toctext>Relation to variational 
        Bayes methods</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#Example:_Mixture_Gaussian"><SPAN 
        class=tocnumber>4</SPAN> <SPAN class=toctext>Example: Mixture 
        Gaussian</SPAN></A> 
        <UL>
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#E-step:"><SPAN 
          class=tocnumber>4.1</SPAN> <SPAN class=toctext>E-step:</SPAN></A> 
          <LI class=toclevel-2><A 
          href="http://en.wikipedia.org/wiki/Em_algorithm#M-step"><SPAN 
          class=tocnumber>4.2</SPAN> <SPAN class=toctext>M-step</SPAN></A> 
        </LI></UL>
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#References"><SPAN 
        class=tocnumber>5</SPAN> <SPAN class=toctext>References</SPAN></A> 
        <LI class=toclevel-1><A 
        href="http://en.wikipedia.org/wiki/Em_algorithm#See_also"><SPAN 
        class=tocnumber>6</SPAN> <SPAN class=toctext>See also</SPAN></A> 
    </LI></UL></TD></TR></TBODY></TABLE>
<P>
<SCRIPT type=text/javascript>//<![CDATA[ if (window.showTocToggle) { var tocShowText = "show"; var tocHideText = "hide"; showTocToggle(); } //]]></SCRIPT>
</P>
<DIV class=editsection style="FLOAT: right; MARGIN-LEFT: 5px">[<A 
title="Edit section: Specification of the EM procedure" 
href="http://en.wikipedia.org/w/index.php?title=Expectation-maximization_algorithm&amp;action=edit&amp;section=1">edit</A>]</DIV>
<P><A id=Specification_of_the_EM_procedure 
name=Specification_of_the_EM_procedure></A></P>
<H2>Specification of the EM procedure</H2>
<P>Let <IMG class=tex alt=\textbf{y} 
src="Expectation-maximization algorithm.files/ff58c8e0e55b508d25fa7aff97d497b1.png"> 
denote incomplete data consisting of values of observable variables and <IMG 
class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
the missing data. Together, <IMG class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
and <IMG class=tex alt=\textbf{y} 
src="Expectation-maximization algorithm.files/ff58c8e0e55b508d25fa7aff97d497b1.png"> 
form the complete data. <IMG class=tex alt=\textbf{x} 
src="Expectation-maximization algorithm.files/f2a48e1cd2da440643ea07a3b2f60e6f.png"> 
can either be actual missing measurement or a hidden variable that would make 
the problem easier if its value would be known. For instance, in <A 
title="Mixture model" href="http://en.wikipedia.org/wiki/Mixture_model">mixture 
models</A>, the likelihood formula would be much more convenient if mixture 
components that "generated" the samples would be known (see example below).</P>
<DIV class=editsection style="FLOAT: right; MARGIN-LEFT: 5px">[<A 
title="Edit section: Estimate unobservable data" 
href="http://en.wikipedia.org/w/index.php?title=Expectation-maximization_algorithm&amp;action=edit&amp;section=2">edit</A>]</DIV>
<P><A id=Estimate_unobservable_data name=Estimate_unobservable_data></A></P>
<H3>Estimate unobservable data</H3>
<P>Let <IMG class=tex alt=p\, 
src="Expectation-maximization algorithm.files/5a34bb082daf037b3c4b14c13af6855b.png"> 
be the joint <A title="Probability distribution function" 
href="http://en.wikipedia.org/wiki/Probability_distribution_function">probability 
distribution</A> (continuous case) or <A title="Probability mass function" 
href="http://en.wikipedia.org/wiki/Probability_mass_function">probability mass 
function</A> (discrete case) of the complete data with parameters given by the 
vector <SPAN class=texhtml>θ</SPAN>: <IMG class=tex 
alt="p( \mathbf y, \mathbf x | \theta)" 
src="Expectation-maximization algorithm.files/e8761ada1a3ed08273a0b5659a07de7a.png">. 
This function then also gives the complete data <A title=Likelihood 
href="http://en.wikipedia.org/wiki/Likelihood">likelihood</A>. Further, note 
that the <A title="Conditional distribution" 
href="http://en.wikipedia.org/wiki/Conditional_distribution">conditional 
distribution</A> of the missing data given the observed can be expressed as:</P>
<DL>
  <DD><IMG class=tex 
  alt="p(\mathbf x |\mathbf y, \theta) = \frac{p(\mathbf y, \mathbf x | \theta)}{p(\mathbf y | \theta)} = \frac{p(\mathbf y|\mathbf x, \theta) p(\mathbf x |\theta) }{\int p(\mathbf y|\mathbf x, \theta) p(\mathbf x |\theta) d\mathbf x}" 
  src="Expectation-maximization algorithm.files/0d42ab25f9928bd7659e6b2f6d4d2f82.png"> 
  </DD></DL>
<P>when using the <A title="Bayes' theorem" 
href="http://en.wikipedia.org/wiki/Bayes'_theorem">Bayes rule</A> and <A 
title="Law of total probability" 
href="http://en.wikipedia.org/wiki/Law_of_total_probability">law of total 
probability</A>. This formulation only requires knowledge of the observation 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91成人网在线| 日本aⅴ亚洲精品中文乱码| 国产成人8x视频一区二区| 精品国产污网站| 极品美女销魂一区二区三区| 久久综合久久久久88| 国产成人av一区| 成人免费在线观看入口| 在线视频你懂得一区| 五月天一区二区| 日韩欧美激情在线| 精品一区二区久久| 中文字幕永久在线不卡| 欧美日韩在线三级| 激情五月激情综合网| 国产精品久久久久久久久果冻传媒 | 免费看精品久久片| 久久久另类综合| 一本色道久久综合亚洲精品按摩| 一区二区激情小说| 精品日韩一区二区| 成人sese在线| 日本午夜精品一区二区三区电影| 欧美激情一区二区三区全黄| 91看片淫黄大片一级在线观看| 亚洲大片一区二区三区| 久久久精品欧美丰满| 91国在线观看| 国产在线看一区| 亚洲综合成人在线视频| 26uuu欧美| 欧美三片在线视频观看 | 国产精品亚洲综合一区在线观看| 国产精品国产a| 欧美一区二区成人| 97精品久久久午夜一区二区三区 | 亚洲色图视频网| 日韩一区二区三区高清免费看看 | 蜜桃精品在线观看| 亚洲品质自拍视频网站| 日韩三级伦理片妻子的秘密按摩| 不卡一区在线观看| 韩国v欧美v亚洲v日本v| 午夜精品久久久久久不卡8050| 国产丝袜欧美中文另类| 欧美一区二区高清| 欧美在线观看视频一区二区三区 | 亚洲天堂成人网| 欧美va亚洲va在线观看蝴蝶网| 91老司机福利 在线| 豆国产96在线|亚洲| 青青草原综合久久大伊人精品| 综合电影一区二区三区 | 成人av片在线观看| 国产精品99久久久| 久久99精品久久久| 美女视频黄a大片欧美| 亚洲激情成人在线| 一区在线播放视频| 亚洲国产精品99久久久久久久久| 日韩欧美一级在线播放| 欧美日韩国产天堂| 在线一区二区视频| 北岛玲一区二区三区四区| 国产一区二区三区日韩| 麻豆传媒一区二区三区| 日韩精品国产精品| 天使萌一区二区三区免费观看| 亚洲免费在线电影| 亚洲视频免费在线| 国产精品久久久久一区二区三区共| 久久美女高清视频| 久久久综合视频| 久久久久88色偷偷免费| 久久久蜜桃精品| 国产日产精品1区| 国产精品视频线看| 国产蜜臀97一区二区三区| 国产日韩欧美a| 国产精品久久久久9999吃药| 欧美高清在线一区二区| 国产日本欧美一区二区| 国产欧美日韩卡一| 国产精品国产三级国产三级人妇 | 成人免费视频免费观看| 国产iv一区二区三区| 国产一区二区伦理| 懂色av一区二区夜夜嗨| 成人av影视在线观看| 国产成人av电影在线播放| 国产91在线看| 91麻豆蜜桃一区二区三区| 91免费视频观看| 精品视频免费看| 日韩精品一区二区三区在线播放| 精品久久人人做人人爽| 日本一区二区成人在线| 亚洲日本va在线观看| 亚洲国产色一区| 久久99热狠狠色一区二区| 国产一区二区三区最好精华液| 成人h动漫精品| 欧美性猛交一区二区三区精品| 5858s免费视频成人| 久久亚洲二区三区| 亚洲人成精品久久久久久| 日韩国产欧美在线视频| 91免费在线看| 欧美一区二区啪啪| 国产精品美女久久久久aⅴ| 亚洲精品视频在线| 精品一区二区三区免费观看| 99麻豆久久久国产精品免费| 欧美日本乱大交xxxxx| 久久伊人蜜桃av一区二区| 亚洲品质自拍视频网站| 久久精品噜噜噜成人88aⅴ | 一本色道亚洲精品aⅴ| 欧美一区二区黄色| 最新久久zyz资源站| 乱中年女人伦av一区二区| av在线不卡观看免费观看| 欧美精品视频www在线观看| 国产色产综合产在线视频| 亚洲福利一区二区| 成人精品国产福利| 日韩手机在线导航| 亚洲免费资源在线播放| 国产综合久久久久影院| 欧美影片第一页| 中文字幕乱码久久午夜不卡| 日本成人超碰在线观看| 91蜜桃在线观看| 久久欧美一区二区| 日本成人中文字幕| 日本韩国欧美一区| 国产日韩欧美精品电影三级在线| 日本欧美一区二区| 日本道在线观看一区二区| 国产欧美日韩在线观看| 日本怡春院一区二区| 日本韩国欧美国产| 国产精品丝袜久久久久久app| 精一区二区三区| 欧美一区二区性放荡片| 亚洲在线视频一区| 91网上在线视频| 国产精品久久久久国产精品日日| 国产乱人伦精品一区二区在线观看| 欧美日韩一区视频| 亚洲综合精品久久| 日本韩国欧美一区二区三区| 欧美激情一区二区三区四区| 韩国女主播成人在线| 精品国产sm最大网站免费看| 亚洲成人av电影| 欧美午夜寂寞影院| 一个色综合网站| 色激情天天射综合网| 国产精品伦一区| 波多野结衣中文字幕一区| 日本一区二区三区视频视频| 国产盗摄精品一区二区三区在线| 26uuu色噜噜精品一区| 国产麻豆精品视频| 26uuu亚洲婷婷狠狠天堂| 韩国成人在线视频| 久久久电影一区二区三区| 国产乱码一区二区三区| 国产三级一区二区三区| 国产成人免费在线视频| 国产日韩欧美制服另类| 成人av动漫在线| 亚洲欧美日韩国产综合| 在线欧美日韩精品| 亚洲va中文字幕| 欧美一级二级三级乱码| 极品少妇一区二区三区精品视频| 精品久久久影院| 国产成人精品免费网站| 国产精品免费av| 色美美综合视频| 午夜激情一区二区| 精品久久久久久亚洲综合网| 国产精品自产自拍| 中文字幕人成不卡一区| 欧美色倩网站大全免费| 老司机精品视频线观看86| 久久久av毛片精品| 99精品国产99久久久久久白柏| 一区二区三区在线观看网站| 欧美美女一区二区在线观看| 老汉av免费一区二区三区| 欧美激情一区二区| 欧美性大战久久| 精品在线播放午夜| 亚洲免费观看高清在线观看| 69堂成人精品免费视频| 国产精品资源在线观看| 一区二区三区**美女毛片|