?? mvsvmclass.m
字號:
function [y,votes] = mvsvmclass(X,model)% MVSVMCLASS Majority voting multi-class SVM classifier.%% Synopsis:% [y,votes] = mvsvmclass(X,model)%% Description:% [y,votes] = mvsvmclass(X,model) multi-class SVM classifier % based on majority voting. The classifier involves nrule% binary rules each classifying into one of nclass labels.% The final decision is make for the class with majority % votes.%% Input:% X [dim x num_data] Input vectors to be classified.%% model [struct] Multi-class SVM majority voting classifier:% .Alpha [nsv x nrule] Weights.% .bin_y [2 x nrule] Translation between binary responses of% the discriminant functions and class labels.% .b [nrule x 1] Biases of discriminant functions.% .sv.X [dim x nsv] Support vectors.% .options.ker [string] Kernel identifier; see 'help kernel'.% .options.arg [1 x nargs] Kernel agrument(s).%% Output:% y [1 x num_data] Predicted labels.% votes [nclass x num_data] Number of votes for each class.%% Example:%% See also % OAOSVM, SVMCLASS.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications% 11-Feb-2003, VF % 8-Feb-2003, VF % 3-Jun-2002, V.Franc[dim,num_data] = size(X);nclass = max( model.bin_y(:) );nrule = size( model.Alpha, 2);votes = zeros(nclass, num_data );dfce = kernelproj( X, model );for i=1:nrule, inx_pos = find( dfce(i,:) >= 0 ); inx_neg = find( dfce(i,:) < 0 ); votes( model.bin_y(1,i), inx_pos) = votes( model.bin_y(1,i), inx_pos) + 1; votes( model.bin_y(2,i), inx_neg) = votes( model.bin_y(2,i), inx_neg) + 1;end[dummy, y] = max( votes );return;% EOF
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -