?? svmclass.m
字號:
function [y,dfce] = svmclass(X,model)% SVMCLASS Support Vector Machines Classifier.%% Synopsis:% [y,dfce] = svmclass( X, model )%% Description:% [y,dfce] = svmclass( X, model ) classifies input vectors X% into classes using the multi-class SVM classifier% y(i) = argmax f_j(X(:,i))% j=1..nfun% where f_j are linear functions in the feature space given % by the prescribed kernel function (options.ker, options.arg). % The discriminant functions f_j are determined by % .Alpha [nsv x nfun] ... multipliers associated to SV% .b [nclass] ... biases of discriminant functions.% .sv.X [dim x nsv] ... support vectors.% % See 'help kernelproj' for more info about valuation of the % discriminant functions f_j.%% In the binary case nfun=1 the binary SVM classifier is used% y(i) = 1 if f(X(:,i) >= 0% = 2 if f(X(:,i) < 0% where f is the disrimiant function given by Alpha [nsv x 1],% b [1x1] and support vectors sv.X.% % Input:% X [dim x num_data] Input vectors to be classified.%% model [struct] SVM classifier:% .Alpha [nsv x nfun] Multipliers associated to suport vectors.% .b [nfun x 1] Biases.% .sv.X [dim x nsv] Support vectors.% .options.ker [string] Kernel identifier.% .options.arg [1 x nargs] Kernel argument(s).%% Output:% y [1 x num_data] Predicted labels.% dfce [nfun x num_data] Values of discriminant functions.%% Example:% trn = load('riply_trn');% model = smo(trn,struct('ker','rbf','arg',1,'C',10));% tst = load('riply_tst');% ypred = svmclass( tst.X, model );% cerror( ypred, tst.y )% % See also % SMO, SVMLIGHT, SVMQUADPROG, KFD, KFDQP, MVSVMCLASS. %% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 14-may-2004, VF% 09-May-2003, VF% 14-Jan-2003, VF% allows model to be given in cellmodel=c2s(model);dfce = kernelproj(X, model);nfun = size(dfce,1);if nfun == 1, % Binary case %------------------------------- y = ones(size(dfce)); y( find( dfce < 0 )) = 2;else % Multi-class case %------------------------------- [dummy,y] = max( dfce );endreturn;% EOF
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -