?? bsvm2.m
字號:
function model = new_bsvm2( data, options )% NEW_BSVM2 Multi-class BSVM with L2-soft margin.%% Synopsis:% model = new_bsvm2( data, options ) %% Description:% This function trains the multi-class SVM classifier based% on BSVM formulation (bias added to the objective function) and% L2-soft margin penalization of misclassifications [Franc02][Hsu02].% The quadratic programming criterion can be optimized by one of the% following algorithms:% mdm ... Mitchell-Demyanov-Malozemov% imdm ... Mitchell-Demyanov-Malozemov Improved 1.% iimdm ... Mitchell-Demyanov-Malozemov Improved 2.% kozinec ... Kozinec algorithm.% keerthi ... NPA algorithm by Keerthi et al.% kowalczyk ... Based on Kowalczyk's maximal margin perceptron.%% Input:% data [struct] Training data:% .X [dim x num_data] Training vectors.% .y [1 x num_data] Labels (1,2,...,nclass).%% options [struct] Control parameters:% .ker [string] Kernel identifier. See 'help kernel'.% .arg [1 x nargs] Kernel argument(s).% .C [1x1] Regularization constant.% .qp [string] QP solver to use: 'mdm', 'imdm', 'iimdm' (default), % 'kozinec', 'kowalczyk','keerthi'.% .tmax [1x1] Maximal number of iterations.% .tolabs [1x1] Absolute tolerance stopping condition (default 0.0).% .tolrel [1x1] Relative tolerance stopping condition (default 0.001).% .cache [1x1] Number of columns of kernel matrix to be cached.% .verb [1x1] If 1 then info about training process is printed.%% Output:% model [struct] Multi-class SVM classifier:% .Alpha [nsv x nclass] Weights.% .b [nclass x 1] Biases.% .sv.X [dim x nsv] Support vectors.% .nsv [1x1] Number of support vectors.% .options [struct] Copy of input options.% .t [1x1] Number of iterations.% .UB [1x1] Upper bound on the optimal solution.% .LB [1x1] Lower bound on the optimal solution.% .History [2 x (t+1)] UB and LB with respect to t.% .trnerr [1x1] Training classification error.% .kercnt [1x1] Number of kernel evaluations.% .cputime [1x1] CPU time (measured by tic-toc).% .qp_stat [struct] Statistics about QP optimization:% .access [1x1] Number of requested columns matrix H.% .t [1x1] Number of iterations.% .UB [1x1] Upper bound on optimal criterion.% .LB [1x1] Lower bound on optimal criterion.% .LB_History [1x(t+1)] LB with respect to t.% .UB_History [1x(t+1)] UB with respect to t.% .NA [1x1] Number of non-zero elements in solution.%% Example:% data = load('pentagon');% options = struct('ker','rbf','arg',1,'C',10);% model = bsvm2(data,options )% figure; % ppatterns(data); ppatterns(model.sv.X,'ok',12);% pboundary(model);%% See also % SVMCLASS, OAASVM, OAOSVM.%% About: Statistical Pattern Recognition Toolbox% (C) 1999-2003, Written by Vojtech Franc and Vaclav Hlavac% <a href="http://www.cvut.cz">Czech Technical University Prague</a>% <a href="http://www.feld.cvut.cz">Faculty of Electrical Engineering</a>% <a href="http://cmp.felk.cvut.cz">Center for Machine Perception</a>% Modifications:% 29-nov-2004, VF% 26-nov-2004, VF% 16-Nov-2004, VF% 31-may-2004, VF% 23-jan-2003, VFtic;% process inputs %-------------------------------------------------------data=c2s(data);if nargin < 2, options=[]; else options=c2s(options); endif ~isfield(options,'ker'), options.ker='linear'; endif ~isfield(options,'arg'), options.arg=1; endif ~isfield(options,'C'), options.C=inf; endif ~isfield(options,'tmax'), options.tmax=inf; endif ~isfield(options,'tolabs'), options.tolabs=0; endif ~isfield(options,'tolrel'), options.tolrel=0.001; endif ~isfield(options,'qp'), options.qp='iimdm'; endif ~isfield(options,'cache'), options.cache = 1000; endif ~isfield(options,'verb'), options.verb=0; endif ~isfield(options,'qp_verb'), options.qp_verb=0; end[dim,num_data]=size(data.X);nclass = max(data.y);% display info%---------------------if options.verb == 1, fprintf('Binary rules: %d\n', nclass); fprintf('Training data: %d\n', num_data); fprintf('Dimension: %d\n', dim); if isfield( options, 'ker'), fprintf('Kernel: %s\n', options.ker); end if isfield( options, 'arg'), fprintf('arg: %f\n', options.arg(1)); end if isfield( options, 'C'), fprintf('C: %f\n', options.C); end fprintf('QP solver: %s\n', options.qp);end% call MEX implementation[Alpha,b,exitflag,kercnt,access,trnerr,t,NA,UB,LB,History] = bsvm2_mex(... data.X,... data.y,... options.ker,... options.arg,... options.C,... options.qp,... options.tmax,... options.tolabs, ... options.tolrel,... options.cache, ... options.qp_verb );% set up model%-------------------------sv_inx = find( sum(abs(Alpha),1) ~= 0 );Alpha = Alpha(:,sv_inx)';for i = 1:size(Alpha,2), inx = find( data.y(sv_inx) ~= i); Alpha(inx,i) = -Alpha(inx,i);endmodel.Alpha = Alpha;model.b = b;model.sv.X = data.X(:,sv_inx);model.sv.y = data.y(sv_inx);model.sv.inx = sv_inx;model.nsv = length(sv_inx);model.options = options;model.exitflag = exitflag;model.trnerr = cerror( svmclass(data.X, model), data.y );model.kercnt = kercnt;model.qp_stat.access = access;model.qp_stat.t = t;model.qp_stat.UB = UB;model.qp_stat.LB = LB;model.qp_stat.LB_History = History(1,:);model.qp_stat.UB_History = History(2,:);model.qp_stat.NA = NA;model.cputime = toc;model.fun = 'svmclass';return;% EOF
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -