?? twofishengine.java
字號:
int[] k32e = new int[MAX_KEY_BITS/64]; // 4 int[] k32o = new int[MAX_KEY_BITS/64]; // 4 int[] sBoxKeys = new int[MAX_KEY_BITS/64]; // 4 gSubKeys = new int[TOTAL_SUBKEYS]; if (k64Cnt < 1) { throw new IllegalArgumentException("Key size less than 64 bits"); } if (k64Cnt > 4) { throw new IllegalArgumentException("Key size larger than 256 bits"); } /* * k64Cnt is the number of 8 byte blocks (64 chunks) * that are in the input key. The input key is a * maximum of 32 bytes (256 bits), so the range * for k64Cnt is 1..4 */ for (int i=0; i<k64Cnt ; i++) { int p = i* 8; k32e[i] = BytesTo32Bits(key, p); k32o[i] = BytesTo32Bits(key, p+4); sBoxKeys[k64Cnt-1-i] = RS_MDS_Encode(k32e[i], k32o[i]); } int q,A,B; for (int i=0; i < TOTAL_SUBKEYS / 2 ; i++) { q = i*SK_STEP; A = F32(q, k32e); B = F32(q+SK_BUMP, k32o); B = B << 8 | B >>> 24; A += B; gSubKeys[i*2] = A; A += B; gSubKeys[i*2 + 1] = A << SK_ROTL | A >>> (32-SK_ROTL); } /* * fully expand the table for speed */ int k0 = sBoxKeys[0]; int k1 = sBoxKeys[1]; int k2 = sBoxKeys[2]; int k3 = sBoxKeys[3]; int b0, b1, b2, b3; gSBox = new int[4*MAX_KEY_BITS]; for (int i=0; i<MAX_KEY_BITS; i++) { b0 = b1 = b2 = b3 = i; switch (k64Cnt & 3) { case 1: gSBox[i*2] = gMDS0[(P[P_01][b0] & 0xff) ^ b0(k0)]; gSBox[i*2+1] = gMDS1[(P[P_11][b1] & 0xff) ^ b1(k0)]; gSBox[i*2+0x200] = gMDS2[(P[P_21][b2] & 0xff) ^ b2(k0)]; gSBox[i*2+0x201] = gMDS3[(P[P_31][b3] & 0xff) ^ b3(k0)]; break; case 0: /* 256 bits of key */ b0 = (P[P_04][b0] & 0xff) ^ b0(k3); b1 = (P[P_14][b1] & 0xff) ^ b1(k3); b2 = (P[P_24][b2] & 0xff) ^ b2(k3); b3 = (P[P_34][b3] & 0xff) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xff) ^ b0(k2); b1 = (P[P_13][b1] & 0xff) ^ b1(k2); b2 = (P[P_23][b2] & 0xff) ^ b2(k2); b3 = (P[P_33][b3] & 0xff) ^ b3(k2); case 2: gSBox[i*2] = gMDS0[(P[P_01] [(P[P_02][b0] & 0xff) ^ b0(k1)] & 0xff) ^ b0(k0)]; gSBox[i*2+1] = gMDS1[(P[P_11] [(P[P_12][b1] & 0xff) ^ b1(k1)] & 0xff) ^ b1(k0)]; gSBox[i*2+0x200] = gMDS2[(P[P_21] [(P[P_22][b2] & 0xff) ^ b2(k1)] & 0xff) ^ b2(k0)]; gSBox[i*2+0x201] = gMDS3[(P[P_31] [(P[P_32][b3] & 0xff) ^ b3(k1)] & 0xff) ^ b3(k0)]; break; } } /* * the function exits having setup the gSBox with the * input key material. */ } /** * Encrypt the given input starting at the given offset and place * the result in the provided buffer starting at the given offset. * The input will be an exact multiple of our blocksize. * * encryptBlock uses the pre-calculated gSBox[] and subKey[] * arrays. */ private void encryptBlock( byte[] src, int srcIndex, byte[] dst, int dstIndex) { int x0 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[INPUT_WHITEN]; int x1 = BytesTo32Bits(src, srcIndex + 4) ^ gSubKeys[INPUT_WHITEN + 1]; int x2 = BytesTo32Bits(src, srcIndex + 8) ^ gSubKeys[INPUT_WHITEN + 2]; int x3 = BytesTo32Bits(src, srcIndex + 12) ^ gSubKeys[INPUT_WHITEN + 3]; int k = ROUND_SUBKEYS; int t0, t1; for (int r = 0; r < ROUNDS; r +=2) { t0 = Fe32_0(x0); t1 = Fe32_3(x1); x2 ^= t0 + t1 + gSubKeys[k++]; x2 = x2 >>>1 | x2 << 31; x3 = (x3 << 1 | x3 >>> 31) ^ (t0 + 2*t1 + gSubKeys[k++]); t0 = Fe32_0(x2); t1 = Fe32_3(x3); x0 ^= t0 + t1 + gSubKeys[k++]; x0 = x0 >>>1 | x0 << 31; x1 = (x1 << 1 | x1 >>> 31) ^ (t0 + 2*t1 + gSubKeys[k++]); } Bits32ToBytes(x2 ^ gSubKeys[OUTPUT_WHITEN], dst, dstIndex); Bits32ToBytes(x3 ^ gSubKeys[OUTPUT_WHITEN + 1], dst, dstIndex + 4); Bits32ToBytes(x0 ^ gSubKeys[OUTPUT_WHITEN + 2], dst, dstIndex + 8); Bits32ToBytes(x1 ^ gSubKeys[OUTPUT_WHITEN + 3], dst, dstIndex + 12); } /** * Decrypt the given input starting at the given offset and place * the result in the provided buffer starting at the given offset. * The input will be an exact multiple of our blocksize. */ private void decryptBlock( byte[] src, int srcIndex, byte[] dst, int dstIndex) { int x2 = BytesTo32Bits(src, srcIndex) ^ gSubKeys[OUTPUT_WHITEN]; int x3 = BytesTo32Bits(src, srcIndex+4) ^ gSubKeys[OUTPUT_WHITEN + 1]; int x0 = BytesTo32Bits(src, srcIndex+8) ^ gSubKeys[OUTPUT_WHITEN + 2]; int x1 = BytesTo32Bits(src, srcIndex+12) ^ gSubKeys[OUTPUT_WHITEN + 3]; int k = ROUND_SUBKEYS + 2 * ROUNDS -1 ; int t0, t1; for (int r = 0; r< ROUNDS ; r +=2) { t0 = Fe32_0(x2); t1 = Fe32_3(x3); x1 ^= t0 + 2*t1 + gSubKeys[k--]; x0 = (x0 << 1 | x0 >>> 31) ^ (t0 + t1 + gSubKeys[k--]); x1 = x1 >>>1 | x1 << 31; t0 = Fe32_0(x0); t1 = Fe32_3(x1); x3 ^= t0 + 2*t1 + gSubKeys[k--]; x2 = (x2 << 1 | x2 >>> 31) ^ (t0 + t1 + gSubKeys[k--]); x3 = x3 >>>1 | x3 << 31; } Bits32ToBytes(x0 ^ gSubKeys[INPUT_WHITEN], dst, dstIndex); Bits32ToBytes(x1 ^ gSubKeys[INPUT_WHITEN + 1], dst, dstIndex + 4); Bits32ToBytes(x2 ^ gSubKeys[INPUT_WHITEN + 2], dst, dstIndex + 8); Bits32ToBytes(x3 ^ gSubKeys[INPUT_WHITEN + 3], dst, dstIndex + 12); } /* * TODO: This can be optimised and made cleaner by combining * the functionality in this function and applying it appropriately * to the creation of the subkeys during key setup. */ private final int F32(int x, int[] k32) { int b0 = b0(x); int b1 = b1(x); int b2 = b2(x); int b3 = b3(x); int k0 = k32[0]; int k1 = k32[1]; int k2 = k32[2]; int k3 = k32[3]; int result = 0; switch (k64Cnt & 3) { case 1: result = gMDS0[(P[P_01][b0] & 0xff) ^ b0(k0)] ^ gMDS1[(P[P_11][b1] & 0xff) ^ b1(k0)] ^ gMDS2[(P[P_21][b2] & 0xff) ^ b2(k0)] ^ gMDS3[(P[P_31][b3] & 0xff) ^ b3(k0)]; break; case 0: /* 256 bits of key */ b0 = (P[P_04][b0] & 0xff) ^ b0(k3); b1 = (P[P_14][b1] & 0xff) ^ b1(k3); b2 = (P[P_24][b2] & 0xff) ^ b2(k3); b3 = (P[P_34][b3] & 0xff) ^ b3(k3); case 3: b0 = (P[P_03][b0] & 0xff) ^ b0(k2); b1 = (P[P_13][b1] & 0xff) ^ b1(k2); b2 = (P[P_23][b2] & 0xff) ^ b2(k2); b3 = (P[P_33][b3] & 0xff) ^ b3(k2); case 2: result = gMDS0[(P[P_01][(P[P_02][b0]&0xff)^b0(k1)]&0xff)^b0(k0)] ^ gMDS1[(P[P_11][(P[P_12][b1]&0xff)^b1(k1)]&0xff)^b1(k0)] ^ gMDS2[(P[P_21][(P[P_22][b2]&0xff)^b2(k1)]&0xff)^b2(k0)] ^ gMDS3[(P[P_31][(P[P_32][b3]&0xff)^b3(k1)]&0xff)^b3(k0)]; break; } return result; } /** * Use (12, 8) Reed-Solomon code over GF(256) to produce * a key S-box 32-bit entity from 2 key material 32-bit * entities. * * @param k0 first 32-bit entity * @param k1 second 32-bit entity * @return Remainder polynomial generated using RS code */ private final int RS_MDS_Encode(int k0, int k1) { int r = k1; for (int i = 0 ; i < 4 ; i++) // shift 1 byte at a time { r = RS_rem(r); } r ^= k0; for (int i=0 ; i < 4 ; i++) { r = RS_rem(r); } return r; } /** * Reed-Solomon code parameters: (12,8) reversible code:<p> * <pre> * g(x) = x^4 + (a+1/a)x^3 + ax^2 + (a+1/a)x + 1 * </pre> * where a = primitive root of field generator 0x14D */ private final int RS_rem(int x) { int b = (x >>> 24) & 0xff; int g2 = ((b << 1) ^ ((b & 0x80) != 0 ? RS_GF_FDBK : 0)) & 0xff; int g3 = ((b >>> 1) ^ ((b & 0x01) != 0 ? (RS_GF_FDBK >>> 1) : 0)) ^ g2 ; return ((x << 8) ^ (g3 << 24) ^ (g2 << 16) ^ (g3 << 8) ^ b); } private final int LFSR1(int x) { return (x >> 1) ^ (((x & 0x01) != 0) ? GF256_FDBK_2 : 0); } private final int LFSR2(int x) { return (x >> 2) ^ (((x & 0x02) != 0) ? GF256_FDBK_2 : 0) ^ (((x & 0x01) != 0) ? GF256_FDBK_4 : 0); } private final int Mx_X(int x) { return x ^ LFSR2(x); } // 5B private final int Mx_Y(int x) { return x ^ LFSR1(x) ^ LFSR2(x); } // EF private final int b0(int x) { return x & 0xff; } private final int b1(int x) { return (x >>> 8) & 0xff; } private final int b2(int x) { return (x >>> 16) & 0xff; } private final int b3(int x) { return (x >>> 24) & 0xff; } private final int Fe32_0(int x) { return gSBox[ 0x000 + 2*(x & 0xff) ] ^ gSBox[ 0x001 + 2*((x >>> 8) & 0xff) ] ^ gSBox[ 0x200 + 2*((x >>> 16) & 0xff) ] ^ gSBox[ 0x201 + 2*((x >>> 24) & 0xff) ]; } private final int Fe32_3(int x) { return gSBox[ 0x000 + 2*((x >>> 24) & 0xff) ] ^ gSBox[ 0x001 + 2*(x & 0xff) ] ^ gSBox[ 0x200 + 2*((x >>> 8) & 0xff) ] ^ gSBox[ 0x201 + 2*((x >>> 16) & 0xff) ]; } private final int BytesTo32Bits(byte[] b, int p) { return ((b[p] & 0xff)) | ((b[p+1] & 0xff) << 8) | ((b[p+2] & 0xff) << 16) | ((b[p+3] & 0xff) << 24); } private final void Bits32ToBytes(int in, byte[] b, int offset) { b[offset] = (byte)in; b[offset + 1] = (byte)(in >> 8); b[offset + 2] = (byte)(in >> 16); b[offset + 3] = (byte)(in >> 24); }}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -