?? sbc.c
字號:
/* * * Bluetooth low-complexity, subband codec (SBC) library * * Copyright (C) 2004 Marcel Holtmann <marcel@holtmann.org> * Copyright (C) 2004 Henryk Ploetz <henryk@ploetzli.ch> * * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2.1 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA * */#ifdef HAVE_CONFIG_H#include <config.h>#endif#include <errno.h>#include <malloc.h>#include <string.h>#include <sys/types.h>#include "sbc.h"#include "sbc_tables.h"#define fabs(x) ((x) < 0 ?(-x) : (x))#define SBC_SYNCWORD 0x9C/* sampling frequency */#define SBC_FS_16 0x00#define SBC_FS_32 0x01#define SBC_FS_44 0x02#define SBC_FS_48 0x03/* nrof_blocks */#define SBC_NB_4 0x00#define SBC_NB_8 0x01#define SBC_NB_12 0x02#define SBC_NB_16 0x03/* channel mode */#define SBC_CM_MONO 0x00#define SBC_CM_DUAL_CHANNEL 0x01#define SBC_CM_STEREO 0x02#define SBC_CM_JOINT_STEREO 0x03/* allocation mode */#define SBC_AM_LOUDNESS 0x00#define SBC_AM_SNR 0x01/* subbands */#define SBC_SB_4 0x00#define SBC_SB_8 0x01/* This structure contains an unpacked SBC frame. Yes, there is probably quite some unused space herein */struct sbc_frame { double sampling_frequency; /* in kHz */ u_int8_t blocks; enum { MONO = SBC_CM_MONO, DUAL_CHANNEL = SBC_CM_DUAL_CHANNEL, STEREO = SBC_CM_STEREO, JOINT_STEREO = SBC_CM_JOINT_STEREO } channel_mode; u_int8_t channels; enum { LOUDNESS = SBC_AM_LOUDNESS, SNR = SBC_AM_SNR } allocation_method; u_int8_t subbands; u_int8_t bitpool; u_int8_t join; /* bit number x set means joint stereo has been used in subband x */ u_int8_t scale_factor[2][8]; /* only the lower 4 bits of every element are to be used */ u_int16_t audio_sample[16][2][8]; /* raw integer subband samples in the frame */ double sb_sample[16][2][8]; /* modified subband samples */ double pcm_sample[2][16*8]; /* original pcm audio samples */};struct sbc_decoder_state { int subbands; float S[2][8]; /* Subband samples */ float X[2][8]; /* Audio samples */ float V[2][160], U[2][80], W[2][80]; /* Vectors */};struct sbc_encoder_state { int subbands; float S[2][8]; /* Subband samples */ float X[2][80], Y[2][16], Z[2][80]; /* Vectors */};/* * Calculates the CRC-8 of the first len bits in data */static const u_int8_t crc_table[256] = { 0x00, 0x1D, 0x3A, 0x27, 0x74, 0x69, 0x4E, 0x53, 0xE8, 0xF5, 0xD2, 0xCF, 0x9C, 0x81, 0xA6, 0xBB, 0xCD, 0xD0, 0xF7, 0xEA, 0xB9, 0xA4, 0x83, 0x9E, 0x25, 0x38, 0x1F, 0x02, 0x51, 0x4C, 0x6B, 0x76, 0x87, 0x9A, 0xBD, 0xA0, 0xF3, 0xEE, 0xC9, 0xD4, 0x6F, 0x72, 0x55, 0x48, 0x1B, 0x06, 0x21, 0x3C, 0x4A, 0x57, 0x70, 0x6D, 0x3E, 0x23, 0x04, 0x19, 0xA2, 0xBF, 0x98, 0x85, 0xD6, 0xCB, 0xEC, 0xF1, 0x13, 0x0E, 0x29, 0x34, 0x67, 0x7A, 0x5D, 0x40, 0xFB, 0xE6, 0xC1, 0xDC, 0x8F, 0x92, 0xB5, 0xA8, 0xDE, 0xC3, 0xE4, 0xF9, 0xAA, 0xB7, 0x90, 0x8D, 0x36, 0x2B, 0x0C, 0x11, 0x42, 0x5F, 0x78, 0x65, 0x94, 0x89, 0xAE, 0xB3, 0xE0, 0xFD, 0xDA, 0xC7, 0x7C, 0x61, 0x46, 0x5B, 0x08, 0x15, 0x32, 0x2F, 0x59, 0x44, 0x63, 0x7E, 0x2D, 0x30, 0x17, 0x0A, 0xB1, 0xAC, 0x8B, 0x96, 0xC5, 0xD8, 0xFF, 0xE2, 0x26, 0x3B, 0x1C, 0x01, 0x52, 0x4F, 0x68, 0x75, 0xCE, 0xD3, 0xF4, 0xE9, 0xBA, 0xA7, 0x80, 0x9D, 0xEB, 0xF6, 0xD1, 0xCC, 0x9F, 0x82, 0xA5, 0xB8, 0x03, 0x1E, 0x39, 0x24, 0x77, 0x6A, 0x4D, 0x50, 0xA1, 0xBC, 0x9B, 0x86, 0xD5, 0xC8, 0xEF, 0xF2, 0x49, 0x54, 0x73, 0x6E, 0x3D, 0x20, 0x07, 0x1A, 0x6C, 0x71, 0x56, 0x4B, 0x18, 0x05, 0x22, 0x3F, 0x84, 0x99, 0xBE, 0xA3, 0xF0, 0xED, 0xCA, 0xD7, 0x35, 0x28, 0x0F, 0x12, 0x41, 0x5C, 0x7B, 0x66, 0xDD, 0xC0, 0xE7, 0xFA, 0xA9, 0xB4, 0x93, 0x8E, 0xF8, 0xE5, 0xC2, 0xDF, 0x8C, 0x91, 0xB6, 0xAB, 0x10, 0x0D, 0x2A, 0x37, 0x64, 0x79, 0x5E, 0x43, 0xB2, 0xAF, 0x88, 0x95, 0xC6, 0xDB, 0xFC, 0xE1, 0x5A, 0x47, 0x60, 0x7D, 0x2E, 0x33, 0x14, 0x09, 0x7F, 0x62, 0x45, 0x58, 0x0B, 0x16, 0x31, 0x2C, 0x97, 0x8A, 0xAD, 0xB0, 0xE3, 0xFE, 0xD9, 0xC4};static u_int8_t sbc_crc8(const u_int8_t * data, size_t len){ u_int8_t crc = 0x0f; size_t i; u_int8_t octet; for (i = 0; i < len / 8; i++) crc = crc_table[crc ^ data[i]]; octet = data[i]; for (i = 0; i < len % 8; i++) { char bit = ((octet ^ crc) & 0x80) >> 7; crc = ((crc & 0x7f) << 1) ^ (bit ? 0x1d : 0); octet = octet << 1; } return crc;}/* * Code straight from the spec to calculate the bits array * Takes a pointer to the frame in question, a pointer to the bits array and the sampling frequency (as 2 bit integer) */static void sbc_calculate_bits(const struct sbc_frame *frame, int (*bits)[8], u_int8_t sf){ if (frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) { int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; int ch, sb; for (ch = 0; ch < frame->channels; ch++) { if (frame->allocation_method == SNR) { for (sb = 0; sb < frame->subbands; sb++) { bitneed[ch][sb] = frame->scale_factor[ch][sb]; } } else { for (sb = 0; sb < frame->subbands; sb++) { if (frame->scale_factor[ch][sb] == 0) { bitneed[ch][sb] = -5; } else { if (frame->subbands == 4) { loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; } else { loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; } if (loudness > 0) { bitneed[ch][sb] = loudness / 2; } else { bitneed[ch][sb] = loudness; } } } } max_bitneed = 0; for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } bitcount = 0; slicecount = 0; bitslice = max_bitneed + 1; do { bitslice--; bitcount += slicecount; slicecount = 0; for (sb = 0; sb < frame->subbands; sb++) { if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) { slicecount++; } else if (bitneed[ch][sb] == bitslice + 1) { slicecount += 2; } } } while (bitcount + slicecount < frame->bitpool); if (bitcount + slicecount == frame->bitpool) { bitcount += slicecount; bitslice--; } for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] < bitslice + 2) { bits[ch][sb] = 0; } else { bits[ch][sb] = bitneed[ch][sb] - bitslice; if (bits[ch][sb] > 16) bits[ch][sb] = 16; } } sb = 0; while (bitcount < frame->bitpool && sb < frame->subbands) { if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { bits[ch][sb]++; bitcount++; } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { bits[ch][sb] = 2; bitcount += 2; } sb++; } sb = 0; while (bitcount < frame->bitpool && sb < frame->subbands) { if (bits[ch][sb] < 16) { bits[ch][sb]++; bitcount++; } sb++; } } } else if (frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) { int bitneed[2][8], loudness, max_bitneed, bitcount, slicecount, bitslice; int ch, sb; if (frame->allocation_method == SNR) { for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { bitneed[ch][sb] = frame->scale_factor[ch][sb]; } } } else { for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (frame->scale_factor[ch][sb] == 0) { bitneed[ch][sb] = -5; } else { if (frame->subbands == 4) { loudness = frame->scale_factor[ch][sb] - sbc_offset4[sf][sb]; } else { loudness = frame->scale_factor[ch][sb] - sbc_offset8[sf][sb]; } if (loudness > 0) { bitneed[ch][sb] = loudness / 2; } else { bitneed[ch][sb] = loudness; } } } } } max_bitneed = 0; for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] > max_bitneed) max_bitneed = bitneed[ch][sb]; } } bitcount = 0; slicecount = 0; bitslice = max_bitneed + 1; do { bitslice--; bitcount += slicecount; slicecount = 0; for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if ((bitneed[ch][sb] > bitslice + 1) && (bitneed[ch][sb] < bitslice + 16)) { slicecount++; } else if (bitneed[ch][sb] == bitslice + 1) { slicecount += 2; } } } } while (bitcount + slicecount < frame->bitpool); if (bitcount + slicecount == frame->bitpool) { bitcount += slicecount; bitslice--; } for (ch = 0; ch < 2; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (bitneed[ch][sb] < bitslice + 2) { bits[ch][sb] = 0; } else { bits[ch][sb] = bitneed[ch][sb] - bitslice; if (bits[ch][sb] > 16) bits[ch][sb] = 16; } } } ch = 0; sb = 0; while ((bitcount < frame->bitpool) && (sb < frame->subbands)) { if ((bits[ch][sb] >= 2) && (bits[ch][sb] < 16)) { bits[ch][sb]++; bitcount++; } else if ((bitneed[ch][sb] == bitslice + 1) && (frame->bitpool > bitcount + 1)) { bits[ch][sb] = 2; bitcount += 2; } if (ch == 1) { ch = 0; sb++; } else { ch = 1; } } ch = 0; sb = 0; while ((bitcount < frame->bitpool) && (sb < frame->subbands)) { if (bits[ch][sb] < 16) { bits[ch][sb]++; bitcount++; } if (ch == 1) { ch = 0; sb++; } else { ch = 1; } } }}/* * Unpacks a SBC frame at the beginning of the stream in data, * which has at most len bytes into frame. * Returns the length in bytes of the packed frame, or a negative * value on error. The error codes are: * * -1 Data stream too short * -2 Sync byte incorrect * -3 CRC8 incorrect * -4 Bitpool value out of bounds */static int sbc_unpack_frame(const u_int8_t * data, struct sbc_frame *frame, size_t len){ int consumed; /* Will copy the parts of the header that are relevant to crc calculation here */ u_int8_t crc_header[11] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }; int crc_pos = 0; u_int8_t sf; /* sampling_frequency, temporarily needed as array index */ int ch, sb, blk, bit; /* channel, subband, block and bit standard counters */ int bits[2][8]; /* bits distribution */ int levels[2][8]; /* levels derived from that */ double scalefactor[2][8]; /* derived from frame->scale_factors */ if (len < 4) { return -1; } if (data[0] != SBC_SYNCWORD) { return -2; } sf = (data[1] >> 6) & 0x03; switch (sf) { case SBC_FS_16: frame->sampling_frequency = 16; break; case SBC_FS_32: frame->sampling_frequency = 32; break; case SBC_FS_44: frame->sampling_frequency = 44.1; break; case SBC_FS_48: frame->sampling_frequency = 48; break; } switch ((data[1] >> 4) & 0x03) { case SBC_NB_4: frame->blocks = 4; break; case SBC_NB_8: frame->blocks = 8; break; case SBC_NB_12: frame->blocks = 12; break; case SBC_NB_16: frame->blocks = 16; break; } frame->channel_mode = (data[1] >> 2) & 0x03; switch (frame->channel_mode) { case MONO: frame->channels = 1; break; case DUAL_CHANNEL: /* fall-through */ case STEREO: case JOINT_STEREO: frame->channels = 2; break; } frame->allocation_method = (data[1] >> 1) & 0x01; frame->subbands = (data[1] & 0x01) ? 8 : 4; frame->bitpool = data[2]; if (((frame->channel_mode == MONO || frame->channel_mode == DUAL_CHANNEL) && frame->bitpool > 16 * frame->subbands) || ((frame->channel_mode == STEREO || frame->channel_mode == JOINT_STEREO) && frame->bitpool > 32 * frame->subbands)) { return -4; } /* data[3] is crc, we're checking it later */ consumed = 32; crc_header[0] = data[1]; crc_header[1] = data[2]; crc_pos = 16; if (frame->channel_mode == JOINT_STEREO) { if (len * 8 < consumed + frame->subbands) { return -1; } else { frame->join = 0x00; for (sb = 0; sb < frame->subbands - 1; sb++) { frame->join |= ((data[4] >> (7 - sb)) & 0x01) << sb; } if (frame->subbands == 4) { crc_header[crc_pos / 8] = data[4] & 0xf0; } else { crc_header[crc_pos / 8] = data[4]; } consumed += frame->subbands; crc_pos += frame->subbands; } } if (len * 8 < consumed + (4 * frame->subbands * frame->channels)) { return -1; } else { for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { /* FIXME assert(consumed % 4 == 0); */ frame->scale_factor[ch][sb] = (data[consumed / 8] >> (4 - (consumed % 8))) & 0x0F; crc_header[crc_pos / 8] |= frame->scale_factor[ch][sb] << (4 - (crc_pos % 8)); consumed += 4; crc_pos += 4; } } } if (data[3] != sbc_crc8(crc_header, crc_pos)) { return -3; } sbc_calculate_bits(frame, bits, sf); for (blk = 0; blk < frame->blocks; blk++) { for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { frame->audio_sample[blk][ch][sb] = 0; if (bits[ch][sb] != 0) { for (bit = 0; bit < bits[ch][sb]; bit++) { int b; /* A bit */ if (consumed > len * 8) { return -1; } b = (data[consumed / 8] >> (7 - (consumed % 8))) & 0x01; frame->audio_sample[blk][ch][sb] |= b << (bits[ch][sb] - bit - 1); consumed++; } } } } } for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { levels[ch][sb] = (1 << bits[ch][sb]) - 1; scalefactor[ch][sb] = 2 << frame->scale_factor[ch][sb]; } } for (blk = 0; blk < frame->blocks; blk++) { for (ch = 0; ch < frame->channels; ch++) { for (sb = 0; sb < frame->subbands; sb++) { if (levels[ch][sb] > 0) { frame->sb_sample[blk][ch][sb] = scalefactor[ch][sb] * ((frame->audio_sample[blk][ch][sb] * 2.0 + 1.0) / levels[ch][sb] - 1.0); } else { frame->sb_sample[blk][ch][sb] = 0; } } } } if (frame->channel_mode == JOINT_STEREO) { for (blk = 0; blk < frame->blocks; blk++) { for (sb = 0; sb < frame->subbands; sb++) { if (frame->join & (0x01 << sb)) { frame->sb_sample[blk][0][sb] = frame->sb_sample[blk][0][sb] + frame->sb_sample[blk][1][sb]; frame->sb_sample[blk][1][sb] = frame->sb_sample[blk][0][sb] - 2 * frame->sb_sample[blk][1][sb]; } } } } if (consumed % 8 != 0) consumed += 8 - (consumed % 8); return consumed / 8;}static void sbc_decoder_init(struct sbc_decoder_state *state, const struct sbc_frame *frame){ memset(&state->S, 0, sizeof(state->S)); memset(&state->X, 0, sizeof(state->X)); memset(&state->V, 0, sizeof(state->V)); memset(&state->U, 0, sizeof(state->U)); memset(&state->W, 0, sizeof(state->W)); state->subbands = frame->subbands;}static inline void sbc_synthesize_four(struct sbc_decoder_state *state, struct sbc_frame *frame, int ch, int blk){ int i, j, k; /* Input 4 New Subband Samples */ for (i = 0; i < 4; i++) state->S[ch][i] = frame->sb_sample[blk][ch][i]; /* Shifting */ for (i = 79; i >= 8; i--) state->V[ch][i] = state->V[ch][i - 8]; /* Matrixing */ for (k = 0; k < 8; k++) { state->V[ch][k] = 0; for (i = 0; i < 4; i++) state->V[ch][k] += synmatrix4[k][i] * state->S[ch][i]; } /* Build a 40 values vector U */ for (i = 0; i <= 4; i++) { for (j = 0; j < 4; j++) { state->U[ch][i * 8 + j] = state->V[ch][i * 16 + j]; state->U[ch][i * 8 + j + 4] = state->V[ch][i * 16 + j + 12]; } }
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -