亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mapack.xml

?? C#下的矩陣計算方法,從Japack該過來的,已經試用過,很好用.
?? XML
?? 第 1 頁 / 共 2 頁
字號:
<?xml version="1.0"?>
<doc>
    <assembly>
        <name>Mapack</name>
    </assembly>
    <members>
        <member name="T:Mapack.CholeskyDecomposition">
            <summary>
            	Cholesky Decomposition of a symmetric, positive definite matrix.
            </summary>
            <remarks>
            	For a symmetric, positive definite matrix <c>A</c>, the Cholesky decomposition is a
            	lower triangular matrix <c>L</c> so that <c>A = L * L'</c>.
            	If the matrix is not symmetric or positive definite, the constructor returns a partial 
            	decomposition and sets two internal variables that can be queried using the
            	<see cref="P:Mapack.CholeskyDecomposition.Symmetric"/> and <see cref="P:Mapack.CholeskyDecomposition.PositiveDefinite"/> properties.
            </remarks>
        </member>
        <member name="M:Mapack.CholeskyDecomposition.#ctor(Mapack.Matrix)">
            <summary>Construct a Cholesky Decomposition.</summary>
        </member>
        <member name="M:Mapack.CholeskyDecomposition.Solve(Mapack.Matrix)">
            <summary>Solves a set of equation systems of type <c>A * X = B</c>.</summary>
            <param name="value">Right hand side matrix with as many rows as <c>A</c> and any number of columns.</param>
            <returns>Matrix <c>X</c> so that <c>L * L' * X = B</c>.</returns>
            <exception cref="T:System.ArgumentException">Matrix dimensions do not match.</exception>
            <exception cref="T:System.InvalidOperationException">Matrix is not symmetrix and positive definite.</exception>
        </member>
        <member name="P:Mapack.CholeskyDecomposition.Symmetric">
            <summary>Returns <see langword="true"/> if the matrix is symmetric.</summary>
        </member>
        <member name="P:Mapack.CholeskyDecomposition.PositiveDefinite">
            <summary>Returns <see langword="true"/> if the matrix is positive definite.</summary>
        </member>
        <member name="P:Mapack.CholeskyDecomposition.LeftTriangularFactor">
            <summary>Returns the left triangular factor <c>L</c> so that <c>A = L * L'</c>.</summary>
        </member>
        <member name="T:Mapack.EigenvalueDecomposition">
            <summary>
            Determines the eigenvalues and eigenvectors of a real square matrix.
            </summary>
            <remarks>
            If <c>A</c> is symmetric, then <c>A = V * D * V'</c> and <c>A = V * V'</c>
            where the eigenvalue matrix <c>D</c> is diagonal and the eigenvector matrix <c>V</c> is orthogonal.
            If <c>A</c> is not symmetric, the eigenvalue matrix <c>D</c> is block diagonal
            with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
            <c>lambda+i*mu</c>, in 2-by-2 blocks, <c>[lambda, mu; -mu, lambda]</c>.
            The columns of <c>V</c> represent the eigenvectors in the sense that <c>A * V = V * D</c>.
            The matrix V may be badly conditioned, or even singular, so the validity of the equation
            <c>A=V*D*inverse(V)</c> depends upon the condition of <c>V</c>.
            </remarks>
        </member>
        <member name="M:Mapack.EigenvalueDecomposition.#ctor(Mapack.Matrix)">
            <summary>Construct an eigenvalue decomposition.</summary>
        </member>
        <member name="P:Mapack.EigenvalueDecomposition.RealEigenvalues">
            <summary>Returns the real parts of the eigenvalues.</summary>
        </member>
        <member name="P:Mapack.EigenvalueDecomposition.ImaginaryEigenvalues">
            <summary>Returns the imaginary parts of the eigenvalues.</summary>	
        </member>
        <member name="P:Mapack.EigenvalueDecomposition.EigenvectorMatrix">
            <summary>Returns the eigenvector matrix.</summary>
        </member>
        <member name="P:Mapack.EigenvalueDecomposition.DiagonalMatrix">
            <summary>Returns the block diagonal eigenvalue matrix.</summary>
        </member>
        <member name="T:Mapack.LuDecomposition">
            <summary>
              LU decomposition of a rectangular matrix.
            </summary>
            <remarks>
              For an m-by-n matrix <c>A</c> with m &gt;= n, the LU decomposition is an m-by-n
              unit lower triangular matrix <c>L</c>, an n-by-n upper triangular matrix <c>U</c>,
              and a permutation vector <c>piv</c> of length m so that <c>A(piv)=L*U</c>.
              If m &lt; n, then <c>L</c> is m-by-m and <c>U</c> is m-by-n.
              The LU decompostion with pivoting always exists, even if the matrix is
              singular, so the constructor will never fail.  The primary use of the
              LU decomposition is in the solution of square systems of simultaneous
              linear equations. This will fail if <see cref="P:Mapack.LuDecomposition.NonSingular"/> returns <see langword="false"/>.
            </remarks>
        </member>
        <member name="M:Mapack.LuDecomposition.#ctor(Mapack.Matrix)">
            <summary>Construct a LU decomposition.</summary>	
        </member>
        <member name="M:Mapack.LuDecomposition.Solve(Mapack.Matrix)">
            <summary>Solves a set of equation systems of type <c>A * X = B</c>.</summary>
            <param name="value">Right hand side matrix with as many rows as <c>A</c> and any number of columns.</param>
            <returns>Matrix <c>X</c> so that <c>L * U * X = B</c>.</returns>
        </member>
        <member name="P:Mapack.LuDecomposition.NonSingular">
            <summary>Returns if the matrix is non-singular.</summary>
        </member>
        <member name="P:Mapack.LuDecomposition.Determinant">
            <summary>Returns the determinant of the matrix.</summary>
        </member>
        <member name="P:Mapack.LuDecomposition.LowerTriangularFactor">
            <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
        </member>
        <member name="P:Mapack.LuDecomposition.UpperTriangularFactor">
            <summary>Returns the lower triangular factor <c>L</c> with <c>A=LU</c>.</summary>
        </member>
        <member name="P:Mapack.LuDecomposition.PivotPermutationVector">
            <summary>Returns the pivot permuation vector.</summary>
        </member>
        <member name="T:Mapack.Matrix">
            <summary>Matrix provides the fundamental operations of numerical linear algebra.</summary>
        </member>
        <member name="M:Mapack.Matrix.#ctor(System.Int32,System.Int32)">
            <summary>Constructs an empty matrix of the given size.</summary>
            <param name="rows">Number of rows.</param>
            <param name="columns">Number of columns.</param>
        </member>
        <member name="M:Mapack.Matrix.#ctor(System.Int32,System.Int32,System.Double)">
            <summary>Constructs a matrix of the given size and assigns a given value to all diagonal elements.</summary>
            <param name="rows">Number of rows.</param>
            <param name="columns">Number of columns.</param>
            <param name="value">Value to assign to the diagnoal elements.</param>
        </member>
        <member name="M:Mapack.Matrix.#ctor(System.Double[][])">
            <summary>Constructs a matrix from the given array.</summary>
            <param name="value">The array the matrix gets constructed from.</param>
        </member>
        <member name="M:Mapack.Matrix.Equals(System.Object)">
            <summary>Determines weather two instances are equal.</summary>
        </member>
        <member name="M:Mapack.Matrix.Equals(Mapack.Matrix,Mapack.Matrix)">
            <summary>Determines weather two instances are equal.</summary>
        </member>
        <member name="M:Mapack.Matrix.GetHashCode">
            <summary>Serves as a hash function for a particular type, suitable for use in hashing algorithms and data structures like a hash table.</summary>
        </member>
        <member name="M:Mapack.Matrix.Submatrix(System.Int32,System.Int32,System.Int32,System.Int32)">
            <summary>Returns a sub matrix extracted from the current matrix.</summary>
            <param name="startRow">Start row index</param>
            <param name="endRow">End row index</param>
            <param name="startColumn">Start column index</param>
            <param name="endColumn">End column index</param>
        </member>
        <member name="M:Mapack.Matrix.Submatrix(System.Int32[],System.Int32[])">
            <summary>Returns a sub matrix extracted from the current matrix.</summary>
            <param name="rowIndexes">Array of row indices</param>
            <param name="columnIndexes">Array of column indices</param>
        </member>
        <member name="M:Mapack.Matrix.Submatrix(System.Int32,System.Int32,System.Int32[])">
            <summary>Returns a sub matrix extracted from the current matrix.</summary>
            <param name="i0">Starttial row index</param>
            <param name="i1">End row index</param>
            <param name="c">Array of row indices</param>
        </member>
        <member name="M:Mapack.Matrix.Submatrix(System.Int32[],System.Int32,System.Int32)">
            <summary>Returns a sub matrix extracted from the current matrix.</summary>
            <param name="r">Array of row indices</param>
            <param name="j0">Start column index</param>
            <param name="j1">End column index</param>
        </member>
        <member name="M:Mapack.Matrix.Clone">
            <summary>Creates a copy of the matrix.</summary>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
美女www一区二区| 免费成人美女在线观看| 一区二区在线观看视频| 日韩成人精品在线| 99精品桃花视频在线观看| 91精品黄色片免费大全| 亚洲同性gay激情无套| 老司机午夜精品99久久| 色八戒一区二区三区| 久久久精品国产免费观看同学| 91精品欧美一区二区三区综合在| 国产精品久线观看视频| 午夜精品久久久久影视| 高清av一区二区| 欧美日韩国产精品成人| 亚洲色大成网站www久久九九| 国产在线视视频有精品| 日韩一级在线观看| 性做久久久久久久免费看| 91丨九色丨黑人外教| 欧美激情在线一区二区三区| 久久国产欧美日韩精品| 91精品国产综合久久小美女| 午夜在线电影亚洲一区| 成人精品在线视频观看| 欧美中文字幕久久| 中文字幕日韩一区| 国产精品一区二区男女羞羞无遮挡| 欧美日韩成人一区| 亚洲国产裸拍裸体视频在线观看乱了 | 99免费精品视频| 久久久不卡网国产精品一区| 韩国三级中文字幕hd久久精品| 91精品国产免费| 青青草国产精品97视觉盛宴| 欧美高清视频不卡网| 日韩精品亚洲一区二区三区免费| 欧美日本国产一区| 免费观看日韩av| 精品国产一区二区在线观看| 激情综合色综合久久综合| 欧美精品一区二区精品网| 国产综合久久久久久鬼色| 色综合久久精品| 中文字幕一区二区视频| 91社区在线播放| 亚洲午夜激情网站| 欧美一区二区久久久| 久久99精品久久只有精品| 久久精品夜色噜噜亚洲a∨| 国产精品自拍网站| 亚洲欧洲精品一区二区三区不卡| 一本大道av一区二区在线播放| 亚洲综合久久av| 777午夜精品视频在线播放| 蜜桃久久久久久久| 久久嫩草精品久久久精品一| gogo大胆日本视频一区| 亚洲国产精品久久人人爱| 欧美mv和日韩mv国产网站| 高清免费成人av| 夜夜精品视频一区二区 | 亚洲一区视频在线观看视频| 欧美性视频一区二区三区| 美女网站视频久久| 国产精品亲子伦对白| 欧美日韩一卡二卡| 国产麻豆日韩欧美久久| 一区二区三区免费| 久久精品在线观看| 欧美日韩一区二区在线视频| 国产一区二区三区在线观看免费| 日韩美女啊v在线免费观看| 日韩视频一区二区在线观看| 盗摄精品av一区二区三区| 婷婷开心激情综合| 国产精品美女久久久久久久久久久| 精品视频一区二区三区免费| 国产精品一区二区三区四区 | 亚洲超碰精品一区二区| 国产日韩欧美一区二区三区乱码| 欧美色电影在线| 成人丝袜高跟foot| 久久精品999| 久久在线免费观看| 美女爽到高潮91| 亚洲日本欧美天堂| 精品久久99ma| 欧美精品黑人性xxxx| 成人免费黄色大片| 日韩高清不卡一区二区| 亚洲欧美福利一区二区| 国产亚洲人成网站| 日韩视频一区在线观看| 欧美老年两性高潮| 色屁屁一区二区| aaa欧美大片| 成人三级伦理片| 激情深爱一区二区| 日韩av一区二| 性做久久久久久| 一二三区精品福利视频| 一色桃子久久精品亚洲| 中文成人av在线| 欧美国产成人在线| 亚洲午夜激情av| 久久免费看少妇高潮| 欧美特级限制片免费在线观看| 国产91高潮流白浆在线麻豆| 理论片日本一区| 秋霞午夜鲁丝一区二区老狼| 午夜不卡av在线| 亚洲一区二区在线免费看| 欧美精品一区二区三| 91精品综合久久久久久| 91精品国产一区二区| 欧美精品久久天天躁| 欧美日韩国产系列| 欧美精品第一页| 欧美肥胖老妇做爰| 这里只有精品免费| 91精品婷婷国产综合久久性色| 欧美日韩视频第一区| 91精品国产综合久久精品图片| 宅男在线国产精品| 日韩欧美你懂的| 欧美精品一区二区三区在线播放| 2019国产精品| 亚洲国产精品久久久久婷婷884| ...av二区三区久久精品| 日韩伦理av电影| 亚洲一区二区高清| 亚洲va欧美va人人爽| 奇米影视在线99精品| 久热成人在线视频| 成人中文字幕合集| 色狠狠桃花综合| 欧美日本视频在线| 久久综合色鬼综合色| 久久久久久久久免费| 国产精品乱码久久久久久| 亚洲欧美综合网| 视频一区二区三区入口| 国产乱子伦视频一区二区三区 | 丁香婷婷综合激情五月色| 99久久精品一区二区| 欧美日韩不卡一区| 2020日本不卡一区二区视频| 亚洲视频中文字幕| 免费成人在线观看视频| 成人的网站免费观看| 欧美福利视频一区| 久久久久久亚洲综合| 亚洲精品乱码久久久久久久久| 日韩成人精品在线观看| 高清成人在线观看| 欧美日本一区二区| 国产亚洲成av人在线观看导航 | 欧美在线观看一二区| 精品久久国产老人久久综合| 亚洲天堂网中文字| 久久精品国产在热久久| 91蜜桃网址入口| 久久中文娱乐网| 午夜一区二区三区视频| 国产成人亚洲综合a∨婷婷图片| 欧美午夜精品一区| 中文字幕一区二区5566日韩| 蜜臀a∨国产成人精品| 在线中文字幕不卡| 国产精品久久久久久亚洲伦| 美国十次了思思久久精品导航| 色婷婷综合久色| 国产精品久久久久久久久免费樱桃| 蜜桃免费网站一区二区三区| 欧美专区日韩专区| 亚洲欧洲日韩在线| 国产伦精品一区二区三区免费迷| 欧美日韩国产免费一区二区 | 92国产精品观看| 国产片一区二区| 久久99久久久久| 欧美剧情片在线观看| 伊人色综合久久天天人手人婷| 成人自拍视频在线观看| 久久九九全国免费| 韩国精品一区二区| 精品国产网站在线观看| 麻豆精品视频在线观看免费| 欧美日韩在线三级| 亚洲妇女屁股眼交7| 一本大道久久a久久精二百| 中文字幕在线观看不卡| 波多野结衣视频一区| 国产精品久久一卡二卡| 国产成人av一区| 国产精品色婷婷| k8久久久一区二区三区| 国产精品乱码久久久久久| 成人中文字幕在线|