亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? eigenvaluedecomposition.cs

?? C#下的矩陣計算方法,從Japack該過來的,已經試用過,很好用.
?? CS
?? 第 1 頁 / 共 2 頁
字號:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
	using System;

	/// <summary>
	/// Determines the eigenvalues and eigenvectors of a real square matrix.
	/// </summary>
	/// <remarks>
	/// If <c>A</c> is symmetric, then <c>A = V * D * V'</c> and <c>A = V * V'</c>
	/// where the eigenvalue matrix <c>D</c> is diagonal and the eigenvector matrix <c>V</c> is orthogonal.
	/// If <c>A</c> is not symmetric, the eigenvalue matrix <c>D</c> is block diagonal
	/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
	/// <c>lambda+i*mu</c>, in 2-by-2 blocks, <c>[lambda, mu; -mu, lambda]</c>.
	/// The columns of <c>V</c> represent the eigenvectors in the sense that <c>A * V = V * D</c>.
	/// The matrix V may be badly conditioned, or even singular, so the validity of the equation
	/// <c>A=V*D*inverse(V)</c> depends upon the condition of <c>V</c>.
	/// </remarks>
	public class EigenvalueDecomposition
	{
		private int n;           	// matrix dimension
		private double[] d, e; 		// storage of eigenvalues.
		private Matrix V; 			// storage of eigenvectors.
		private Matrix H;  			// storage of nonsymmetric Hessenberg form.
		private double[] ort;    	// storage for nonsymmetric algorithm.
		private double cdivr, cdivi;
		private bool symmetric;

		/// <summary>Construct an eigenvalue decomposition.</summary>
		public EigenvalueDecomposition(Matrix value)
		{
			if (value == null)
			{
				throw new ArgumentNullException("value");				
			}

			if (value.Rows != value.Columns) 
			{
				throw new ArgumentException("Matrix is not a square matrix.", "value");
			}
			
			n = value.Columns;
			V = new Matrix(n,n);
			d = new double[n];
			e = new double[n];
	
			// Check for symmetry.
			this.symmetric = value.Symmetric;
	
			if (this.symmetric)
			{
				for (int i = 0; i < n; i++)
				{
					for (int j = 0; j < n; j++)
					{
						V[i,j] = value[i,j];
					}
				}
		 
				// Tridiagonalize.
				this.tred2();

				// Diagonalize.
				this.tql2();
			} 
			else 
			{
				H = new Matrix(n,n);
				ort = new double[n];
					 
				for (int j = 0; j < n; j++)
				{
					for (int i = 0; i < n; i++)
					{
						H[i,j] = value[i,j];
					}
				}
		 
				// Reduce to Hessenberg form.
				this.orthes();
		 
				// Reduce Hessenberg to real Schur form.
				this.hqr2();
			}
		}
		
		private void tred2() 
		{
			// Symmetric Householder reduction to tridiagonal form.
			// This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
			for (int j = 0; j < n; j++)
				d[j] = V[n-1,j];
	
			// Householder reduction to tridiagonal form.
			for (int i = n-1; i > 0; i--) 
			{
				// Scale to avoid under/overflow.
				double scale = 0.0;
				double h = 0.0;
				for (int k = 0; k < i; k++)
					scale = scale + Math.Abs(d[k]);
				
				if (scale == 0.0) 
				{
					e[i] = d[i-1];
					for (int j = 0; j < i; j++) 
					{
						d[j] = V[i-1,j];
						V[i,j] = 0.0;
						V[j,i] = 0.0;
					}
				}
				else
				{
					// Generate Householder vector.
					for (int k = 0; k < i; k++) 
					{
						d[k] /= scale;
						h += d[k] * d[k];
					}
	
					double f = d[i-1];
					double g = Math.Sqrt(h);
					if (f > 0) g = -g;
	
					e[i] = scale * g;
					h = h - f * g;
					d[i-1] = f - g;
					for (int j = 0; j < i; j++)
						e[j] = 0.0;
		 
					// Apply similarity transformation to remaining columns.
					for (int j = 0; j < i; j++) 
					{
						f = d[j];
						V[j,i] = f;
						g = e[j] + V[j,j] * f;
						for (int k = j+1; k <= i-1; k++) 
						{
							g += V[k,j] * d[k];
							e[k] += V[k,j] * f;
						}
						e[j] = g;
					}
							
					f = 0.0;
					for (int j = 0; j < i; j++) 
					{
						e[j] /= h;
						f += e[j] * d[j];
					}
					
					double hh = f / (h + h);
					for (int j = 0; j < i; j++)
						e[j] -= hh * d[j];
	
					for (int j = 0; j < i; j++) 
					{
						f = d[j];
						g = e[j];
						for (int k = j; k <= i-1; k++)
							V[k,j] -= (f * e[k] + g * d[k]);
	
						d[j] = V[i-1,j];
						V[i,j] = 0.0;
					}
				}
				d[i] = h;
			}
		 
			// Accumulate transformations.
			for (int i = 0; i < n-1; i++) 
			{
				V[n-1,i] = V[i,i];
				V[i,i] = 1.0;
				double h = d[i+1];
				if (h != 0.0) 
				{
					for (int k = 0; k <= i; k++)
						d[k] = V[k,i+1] / h;
	
					for (int j = 0; j <= i; j++) 
					{
						double g = 0.0;
						for (int k = 0; k <= i; k++)
							g += V[k,i+1] * V[k,j];
						for (int k = 0; k <= i; k++)
							V[k,j] -= g * d[k];
					}
				}
		
				for (int k = 0; k <= i; k++)
					V[k,i+1] = 0.0;
			}
		
			for (int j = 0; j < n; j++) 
			{
				d[j] = V[n-1,j];
				V[n-1,j] = 0.0;
			}
				
			V[n-1,n-1] = 1.0;
			e[0] = 0.0;
		} 
		 
		private void tql2() 
		{
			// Symmetric tridiagonal QL algorithm.
			// This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
			for (int i = 1; i < n; i++)
				e[i-1] = e[i];
	
			e[n-1] = 0.0;
		 
			double f = 0.0;
			double tst1 = 0.0;
			double eps = Math.Pow(2.0,-52.0);
	
			for (int l = 0; l < n; l++) 
			{
				// Find small subdiagonal element.
				tst1 = Math.Max(tst1,Math.Abs(d[l]) + Math.Abs(e[l]));
				int m = l;
				while (m < n) 
				{
					if (Math.Abs(e[m]) <= eps*tst1)
						break;
					m++;
				}
		 
				// If m == l, d[l] is an eigenvalue, otherwise, iterate.
				if (m > l) 
				{
					int iter = 0;
					do 
					{
						iter = iter + 1;  // (Could check iteration count here.)
		 
						// Compute implicit shift
						double g = d[l];
						double p = (d[l+1] - g) / (2.0 * e[l]);
						double r = Hypotenuse(p,1.0);
						if (p < 0) 
						{
							r = -r;
						}
	
						d[l] = e[l] / (p + r);
						d[l+1] = e[l] * (p + r);
						double dl1 = d[l+1];
						double h = g - d[l];
						for (int i = l+2; i < n; i++) 
						{
							d[i] -= h;
						}

						f = f + h;
		 
						// Implicit QL transformation.
						p = d[m];
						double c = 1.0;
						double c2 = c;
						double c3 = c;
						double el1 = e[l+1];
						double s = 0.0;
						double s2 = 0.0;
						for (int i = m-1; i >= l; i--) 
						{
							c3 = c2;
							c2 = c;
							s2 = s;
							g = c * e[i];
							h = c * p;
							r = Hypotenuse(p,e[i]);
							e[i+1] = s * r;
							s = e[i] / r;
							c = p / r;
							p = c * d[i] - s * g;
							d[i+1] = h + s * (c * g + s * d[i]);
		 
							// Accumulate transformation.
							for (int k = 0; k < n; k++) 
							{
								h = V[k,i+1];
								V[k,i+1] = s * V[k,i] + c * h;
								V[k,i] = c * V[k,i] - s * h;
							}
						}
							
						p = -s * s2 * c3 * el1 * e[l] / dl1;
						e[l] = s * p;
						d[l] = c * p;
		 
						// Check for convergence.
					} 
					while (Math.Abs(e[l]) > eps*tst1);
				}
				d[l] = d[l] + f;
				e[l] = 0.0;
			}
			 
			// Sort eigenvalues and corresponding vectors.
			for (int i = 0; i < n-1; i++) 
			{
				int k = i;
				double p = d[i];
				for (int j = i+1; j < n; j++) 
				{
					if (d[j] < p) 
					{
						k = j;
						p = d[j];
					}
				}
					 
				if (k != i) 
				{
					d[k] = d[i];
					d[i] = p;
					for (int j = 0; j < n; j++) 
					{
						p = V[j,i];
						V[j,i] = V[j,k];
						V[j,k] = p;
					}
				}
			}
		}
		 
		private void orthes() 
		{
			// Nonsymmetric reduction to Hessenberg form.
			// This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson, 
			// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK.
			int low = 0;
			int high = n-1;
		 
			for (int m = low+1; m <= high-1; m++) 
			{
				// Scale column.
		 
				double scale = 0.0;
				for (int i = m; i <= high; i++)
					scale = scale + Math.Abs(H[i,m-1]);
	
				if (scale != 0.0) 
				{
					// Compute Householder transformation.
					double h = 0.0;
					for (int i = high; i >= m; i--) 
					{
						ort[i] = H[i,m-1]/scale;
						h += ort[i] * ort[i];
					}
						
					double g = Math.Sqrt(h);
					if (ort[m] > 0) g = -g;
	
					h = h - ort[m] * g;
					ort[m] = ort[m] - g;
		 
					// Apply Householder similarity transformation
					// H = (I - u * u' / h) * H * (I - u * u') / h)
					for (int j = m; j < n; j++) 
					{
						double f = 0.0;
						for (int i = high; i >= m; i--) 
							f += ort[i]*H[i,j];
	
						f = f/h;
						for (int i = m; i <= high; i++)
							H[i,j] -= f*ort[i];
					}
		 
					for (int i = 0; i <= high; i++) 
					{
						double f = 0.0;
						for (int j = high; j >= m; j--)
							f += ort[j]*H[i,j];
	
						f = f/h;
						for (int j = m; j <= high; j++)
							H[i,j] -= f*ort[j];
					}
	
					ort[m] = scale*ort[m];
					H[m,m-1] = scale*g;
				}
			}
		 
			// Accumulate transformations (Algol's ortran).
			for (int i = 0; i < n; i++)
				for (int j = 0; j < n; j++)
					V[i,j] = (i == j ? 1.0 : 0.0);
	
			for (int m = high-1; m >= low+1; m--) 
			{
				if (H[m,m-1] != 0.0) 
				{
					for (int i = m+1; i <= high; i++)
						ort[i] = H[i,m-1];
	
					for (int j = m; j <= high; j++) 
					{
						double g = 0.0;
						for (int i = m; i <= high; i++)
							g += ort[i] * V[i,j];
	
						// Double division avoids possible underflow.
						g = (g / ort[m]) / H[m,m-1];
						for (int i = m; i <= high; i++)
							V[i,j] += g * ort[i];
					}
				}
			}
		}
		 
		private void cdiv(double xr, double xi, double yr, double yi)
		{
			// Complex scalar division.
			double r;
			double d;
			if (Math.Abs(yr) > Math.Abs(yi)) 
			{
				r = yi/yr;
				d = yr + r*yi;
				cdivr = (xr + r*xi)/d;
				cdivi = (xi - r*xr)/d;
			} 
			else 
			{
				r = yr/yi;
				d = yi + r*yr;
				cdivr = (r*xr + xi)/d;
				cdivi = (r*xi - xr)/d;
			}
		}

		private void hqr2() 
		{
			// Nonsymmetric reduction from Hessenberg to real Schur form.   
			// This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp.,
			// Vol.ii-Linear Algebra, and the corresponding  Fortran subroutine in EISPACK.
			int nn = this.n;
			int n = nn-1;
			int low = 0;
			int high = nn-1;
			double eps = Math.Pow(2.0,-52.0);
			double exshift = 0.0;
			double p = 0;
			double q = 0;
			double r = 0;
			double s = 0;
			double z = 0;
			double t;
			double w;
			double x;
			double y;
		 
			// Store roots isolated by balanc and compute matrix norm
			double norm = 0.0;
			for (int i = 0; i < nn; i++) 
			{
				if (i < low | i > high) 
				{
					d[i] = H[i,i];
					e[i] = 0.0;
				}
					
				for (int j = Math.Max(i-1,0); j < nn; j++)
					norm = norm + Math.Abs(H[i,j]);
			}
		 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
91福利视频网站| 亚洲综合色丁香婷婷六月图片| 婷婷久久综合九色综合伊人色| 在线观看一区日韩| 午夜精品久久久久久久99水蜜桃| 88在线观看91蜜桃国自产| 日本v片在线高清不卡在线观看| 91精品国产综合久久久久久久| 美女视频黄频大全不卡视频在线播放 | 日韩精品乱码av一区二区| 91精品欧美久久久久久动漫| 精品影视av免费| 国产午夜精品久久久久久免费视 | 国产网站一区二区| 成人国产精品免费网站| 亚洲欧美aⅴ...| 欧美日韩在线亚洲一区蜜芽| 麻豆一区二区三区| 欧美国产一区在线| 欧美在线观看一区| 久久精品国产成人一区二区三区| 亚洲国产经典视频| 精品视频资源站| 国产一区二区免费视频| 一区二区三区精品视频| 日韩欧美亚洲国产另类| 本田岬高潮一区二区三区| 午夜精品久久久久影视| 国产欧美日韩综合精品一区二区| 91蝌蚪porny| 久久精品国产网站| 一区二区三区日韩欧美精品| 精品国产露脸精彩对白| 色国产综合视频| 国产乱理伦片在线观看夜一区| 一区二区三区中文字幕精品精品 | 国产精品亚洲视频| 亚洲第一成人在线| 国产香蕉久久精品综合网| 欧美性xxxxxxxx| 一本色道**综合亚洲精品蜜桃冫| 国产精一品亚洲二区在线视频| 精品国产电影一区二区| 国产成人一区在线| 亚洲mv在线观看| 国产精品免费人成网站| 欧美一区二区视频在线观看| 不卡av免费在线观看| 麻豆一区二区三区| 亚洲一区二区中文在线| 中文在线免费一区三区高中清不卡| 欧美人xxxx| 91麻豆国产在线观看| 国产一区二区精品久久91| 五月天激情综合网| 亚洲欧美日韩人成在线播放| 国产亚洲va综合人人澡精品| 欧美电影免费观看高清完整版在线观看| 在线视频一区二区三区| 92国产精品观看| 成人亚洲一区二区一| 黑人巨大精品欧美一区| 日本在线不卡视频| 国产视频一区在线播放| 7777精品伊人久久久大香线蕉完整版| 成人免费视频在线观看| 国产一区免费电影| 视频一区中文字幕| 亚洲与欧洲av电影| 亚洲精品写真福利| 中文字幕一区二区三区在线观看| 国产欧美日韩不卡免费| 国产性做久久久久久| 国产三级欧美三级日产三级99| 日韩欧美专区在线| 日韩午夜在线观看视频| 日韩一区二区免费在线观看| 欧美精品日韩精品| 91精品国产色综合久久| 欧美高清精品3d| 7777精品伊人久久久大香线蕉 | 免费观看久久久4p| 日韩精品一级二级| 日产欧产美韩系列久久99| 青椒成人免费视频| 久久99精品国产麻豆婷婷| 麻豆91在线观看| 天天综合网 天天综合色| 国产婷婷色一区二区三区四区| 青青国产91久久久久久| 中文字幕一区二区三区色视频 | 欧美日韩高清在线| 在线91免费看| 日韩欧美专区在线| 国产日韩欧美a| 中文字幕中文字幕在线一区 | 久久久久久久久久看片| 久久久精品tv| 国产精品婷婷午夜在线观看| 亚洲人成在线观看一区二区| 香蕉av福利精品导航| 奇米色777欧美一区二区| 日韩免费成人网| 99这里都是精品| 欧美不卡一二三| 精品久久免费看| 国产精品人妖ts系列视频| 亚洲精品欧美综合四区| 日韩成人免费看| 国产成人综合精品三级| 欧美在线你懂得| 精品国产人成亚洲区| 国产精品精品国产色婷婷| 亚洲国产毛片aaaaa无费看| 久久精品国产久精国产爱| 国产ts人妖一区二区| 91福利社在线观看| 精品久久国产老人久久综合| 综合欧美一区二区三区| 男女性色大片免费观看一区二区| 国产成人在线免费观看| 欧美图片一区二区三区| 久久久噜噜噜久噜久久综合| 一区二区三区欧美日韩| 极品少妇xxxx精品少妇偷拍| 一本一道波多野结衣一区二区| 久久综合久久综合久久综合| 色菇凉天天综合网| 欧美精品日韩一本| 欧美国产一区二区| 日本91福利区| 成人av先锋影音| 欧美大胆一级视频| 一区二区三区在线观看国产| 国产精品一区二区在线播放| 精品视频色一区| 专区另类欧美日韩| 国产一区二区三区av电影| 欧美久久久久久久久中文字幕| 国产精品国产三级国产三级人妇| 蜜桃视频一区二区三区在线观看| 91蝌蚪porny成人天涯| 久久精品夜色噜噜亚洲aⅴ| 丝瓜av网站精品一区二区| 91丨porny丨蝌蚪视频| 国产午夜精品久久久久久久| 另类调教123区| 337p亚洲精品色噜噜噜| 一区二区三区欧美亚洲| 97久久精品人人澡人人爽| 久久免费看少妇高潮| 欧美aaaaa成人免费观看视频| 欧美日韩日日摸| 亚洲免费在线观看视频| 99视频国产精品| 国产精品久久久久毛片软件| 国产剧情一区二区| 2021中文字幕一区亚洲| 极品少妇xxxx精品少妇| 日韩欧美国产电影| 日本伊人色综合网| 欧美久久婷婷综合色| 亚洲成人免费av| 欧美日韩在线三区| 亚洲大尺度视频在线观看| 欧美在线小视频| 亚洲一区二区三区激情| 色婷婷综合在线| 亚洲免费在线观看视频| 91小宝寻花一区二区三区| 1024亚洲合集| 欧美主播一区二区三区| 一区二区成人在线| 欧美吻胸吃奶大尺度电影| 亚洲不卡一区二区三区| 欧美日韩在线播放一区| 亚洲第一成人在线| 欧美一区二区私人影院日本| 久草中文综合在线| 国产欧美一区二区精品久导航| 国产99久久久久| 亚洲人吸女人奶水| 欧美日韩在线播放一区| 日本成人在线视频网站| 日韩精品在线网站| 国产精品一区二区在线观看不卡 | 日韩欧美成人午夜| 精品在线观看视频| 国产欧美精品区一区二区三区 | 午夜精品一区在线观看| 欧美理论片在线| 久久99国产精品久久99果冻传媒| 久久嫩草精品久久久精品一| 成人丝袜视频网| 一区二区三区四区不卡在线 | 色欧美88888久久久久久影院| 亚洲国产成人av网| 欧美精品18+| 国产精品18久久久久久久网站| 亚洲婷婷综合色高清在线|