?? eigenvaluedecomposition.cs
字號:
// ----------------------------------------------
// Lutz Roeder's Mapack for .NET, September 2000
// Adapted from Mapack for COM and Jama routines.
// http://www.aisto.com/roeder/dotnet
// ----------------------------------------------
namespace Mapack
{
using System;
/// <summary>
/// Determines the eigenvalues and eigenvectors of a real square matrix.
/// </summary>
/// <remarks>
/// If <c>A</c> is symmetric, then <c>A = V * D * V'</c> and <c>A = V * V'</c>
/// where the eigenvalue matrix <c>D</c> is diagonal and the eigenvector matrix <c>V</c> is orthogonal.
/// If <c>A</c> is not symmetric, the eigenvalue matrix <c>D</c> is block diagonal
/// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
/// <c>lambda+i*mu</c>, in 2-by-2 blocks, <c>[lambda, mu; -mu, lambda]</c>.
/// The columns of <c>V</c> represent the eigenvectors in the sense that <c>A * V = V * D</c>.
/// The matrix V may be badly conditioned, or even singular, so the validity of the equation
/// <c>A=V*D*inverse(V)</c> depends upon the condition of <c>V</c>.
/// </remarks>
public class EigenvalueDecomposition
{
private int n; // matrix dimension
private double[] d, e; // storage of eigenvalues.
private Matrix V; // storage of eigenvectors.
private Matrix H; // storage of nonsymmetric Hessenberg form.
private double[] ort; // storage for nonsymmetric algorithm.
private double cdivr, cdivi;
private bool symmetric;
/// <summary>Construct an eigenvalue decomposition.</summary>
public EigenvalueDecomposition(Matrix value)
{
if (value == null)
{
throw new ArgumentNullException("value");
}
if (value.Rows != value.Columns)
{
throw new ArgumentException("Matrix is not a square matrix.", "value");
}
n = value.Columns;
V = new Matrix(n,n);
d = new double[n];
e = new double[n];
// Check for symmetry.
this.symmetric = value.Symmetric;
if (this.symmetric)
{
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
V[i,j] = value[i,j];
}
}
// Tridiagonalize.
this.tred2();
// Diagonalize.
this.tql2();
}
else
{
H = new Matrix(n,n);
ort = new double[n];
for (int j = 0; j < n; j++)
{
for (int i = 0; i < n; i++)
{
H[i,j] = value[i,j];
}
}
// Reduce to Hessenberg form.
this.orthes();
// Reduce Hessenberg to real Schur form.
this.hqr2();
}
}
private void tred2()
{
// Symmetric Householder reduction to tridiagonal form.
// This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson,
// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
for (int j = 0; j < n; j++)
d[j] = V[n-1,j];
// Householder reduction to tridiagonal form.
for (int i = n-1; i > 0; i--)
{
// Scale to avoid under/overflow.
double scale = 0.0;
double h = 0.0;
for (int k = 0; k < i; k++)
scale = scale + Math.Abs(d[k]);
if (scale == 0.0)
{
e[i] = d[i-1];
for (int j = 0; j < i; j++)
{
d[j] = V[i-1,j];
V[i,j] = 0.0;
V[j,i] = 0.0;
}
}
else
{
// Generate Householder vector.
for (int k = 0; k < i; k++)
{
d[k] /= scale;
h += d[k] * d[k];
}
double f = d[i-1];
double g = Math.Sqrt(h);
if (f > 0) g = -g;
e[i] = scale * g;
h = h - f * g;
d[i-1] = f - g;
for (int j = 0; j < i; j++)
e[j] = 0.0;
// Apply similarity transformation to remaining columns.
for (int j = 0; j < i; j++)
{
f = d[j];
V[j,i] = f;
g = e[j] + V[j,j] * f;
for (int k = j+1; k <= i-1; k++)
{
g += V[k,j] * d[k];
e[k] += V[k,j] * f;
}
e[j] = g;
}
f = 0.0;
for (int j = 0; j < i; j++)
{
e[j] /= h;
f += e[j] * d[j];
}
double hh = f / (h + h);
for (int j = 0; j < i; j++)
e[j] -= hh * d[j];
for (int j = 0; j < i; j++)
{
f = d[j];
g = e[j];
for (int k = j; k <= i-1; k++)
V[k,j] -= (f * e[k] + g * d[k]);
d[j] = V[i-1,j];
V[i,j] = 0.0;
}
}
d[i] = h;
}
// Accumulate transformations.
for (int i = 0; i < n-1; i++)
{
V[n-1,i] = V[i,i];
V[i,i] = 1.0;
double h = d[i+1];
if (h != 0.0)
{
for (int k = 0; k <= i; k++)
d[k] = V[k,i+1] / h;
for (int j = 0; j <= i; j++)
{
double g = 0.0;
for (int k = 0; k <= i; k++)
g += V[k,i+1] * V[k,j];
for (int k = 0; k <= i; k++)
V[k,j] -= g * d[k];
}
}
for (int k = 0; k <= i; k++)
V[k,i+1] = 0.0;
}
for (int j = 0; j < n; j++)
{
d[j] = V[n-1,j];
V[n-1,j] = 0.0;
}
V[n-1,n-1] = 1.0;
e[0] = 0.0;
}
private void tql2()
{
// Symmetric tridiagonal QL algorithm.
// This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson,
// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
for (int i = 1; i < n; i++)
e[i-1] = e[i];
e[n-1] = 0.0;
double f = 0.0;
double tst1 = 0.0;
double eps = Math.Pow(2.0,-52.0);
for (int l = 0; l < n; l++)
{
// Find small subdiagonal element.
tst1 = Math.Max(tst1,Math.Abs(d[l]) + Math.Abs(e[l]));
int m = l;
while (m < n)
{
if (Math.Abs(e[m]) <= eps*tst1)
break;
m++;
}
// If m == l, d[l] is an eigenvalue, otherwise, iterate.
if (m > l)
{
int iter = 0;
do
{
iter = iter + 1; // (Could check iteration count here.)
// Compute implicit shift
double g = d[l];
double p = (d[l+1] - g) / (2.0 * e[l]);
double r = Hypotenuse(p,1.0);
if (p < 0)
{
r = -r;
}
d[l] = e[l] / (p + r);
d[l+1] = e[l] * (p + r);
double dl1 = d[l+1];
double h = g - d[l];
for (int i = l+2; i < n; i++)
{
d[i] -= h;
}
f = f + h;
// Implicit QL transformation.
p = d[m];
double c = 1.0;
double c2 = c;
double c3 = c;
double el1 = e[l+1];
double s = 0.0;
double s2 = 0.0;
for (int i = m-1; i >= l; i--)
{
c3 = c2;
c2 = c;
s2 = s;
g = c * e[i];
h = c * p;
r = Hypotenuse(p,e[i]);
e[i+1] = s * r;
s = e[i] / r;
c = p / r;
p = c * d[i] - s * g;
d[i+1] = h + s * (c * g + s * d[i]);
// Accumulate transformation.
for (int k = 0; k < n; k++)
{
h = V[k,i+1];
V[k,i+1] = s * V[k,i] + c * h;
V[k,i] = c * V[k,i] - s * h;
}
}
p = -s * s2 * c3 * el1 * e[l] / dl1;
e[l] = s * p;
d[l] = c * p;
// Check for convergence.
}
while (Math.Abs(e[l]) > eps*tst1);
}
d[l] = d[l] + f;
e[l] = 0.0;
}
// Sort eigenvalues and corresponding vectors.
for (int i = 0; i < n-1; i++)
{
int k = i;
double p = d[i];
for (int j = i+1; j < n; j++)
{
if (d[j] < p)
{
k = j;
p = d[j];
}
}
if (k != i)
{
d[k] = d[i];
d[i] = p;
for (int j = 0; j < n; j++)
{
p = V[j,i];
V[j,i] = V[j,k];
V[j,k] = p;
}
}
}
}
private void orthes()
{
// Nonsymmetric reduction to Hessenberg form.
// This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson,
// Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK.
int low = 0;
int high = n-1;
for (int m = low+1; m <= high-1; m++)
{
// Scale column.
double scale = 0.0;
for (int i = m; i <= high; i++)
scale = scale + Math.Abs(H[i,m-1]);
if (scale != 0.0)
{
// Compute Householder transformation.
double h = 0.0;
for (int i = high; i >= m; i--)
{
ort[i] = H[i,m-1]/scale;
h += ort[i] * ort[i];
}
double g = Math.Sqrt(h);
if (ort[m] > 0) g = -g;
h = h - ort[m] * g;
ort[m] = ort[m] - g;
// Apply Householder similarity transformation
// H = (I - u * u' / h) * H * (I - u * u') / h)
for (int j = m; j < n; j++)
{
double f = 0.0;
for (int i = high; i >= m; i--)
f += ort[i]*H[i,j];
f = f/h;
for (int i = m; i <= high; i++)
H[i,j] -= f*ort[i];
}
for (int i = 0; i <= high; i++)
{
double f = 0.0;
for (int j = high; j >= m; j--)
f += ort[j]*H[i,j];
f = f/h;
for (int j = m; j <= high; j++)
H[i,j] -= f*ort[j];
}
ort[m] = scale*ort[m];
H[m,m-1] = scale*g;
}
}
// Accumulate transformations (Algol's ortran).
for (int i = 0; i < n; i++)
for (int j = 0; j < n; j++)
V[i,j] = (i == j ? 1.0 : 0.0);
for (int m = high-1; m >= low+1; m--)
{
if (H[m,m-1] != 0.0)
{
for (int i = m+1; i <= high; i++)
ort[i] = H[i,m-1];
for (int j = m; j <= high; j++)
{
double g = 0.0;
for (int i = m; i <= high; i++)
g += ort[i] * V[i,j];
// Double division avoids possible underflow.
g = (g / ort[m]) / H[m,m-1];
for (int i = m; i <= high; i++)
V[i,j] += g * ort[i];
}
}
}
}
private void cdiv(double xr, double xi, double yr, double yi)
{
// Complex scalar division.
double r;
double d;
if (Math.Abs(yr) > Math.Abs(yi))
{
r = yi/yr;
d = yr + r*yi;
cdivr = (xr + r*xi)/d;
cdivi = (xi - r*xr)/d;
}
else
{
r = yr/yi;
d = yi + r*yr;
cdivr = (r*xr + xi)/d;
cdivi = (r*xi - xr)/d;
}
}
private void hqr2()
{
// Nonsymmetric reduction from Hessenberg to real Schur form.
// This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp.,
// Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
int nn = this.n;
int n = nn-1;
int low = 0;
int high = nn-1;
double eps = Math.Pow(2.0,-52.0);
double exshift = 0.0;
double p = 0;
double q = 0;
double r = 0;
double s = 0;
double z = 0;
double t;
double w;
double x;
double y;
// Store roots isolated by balanc and compute matrix norm
double norm = 0.0;
for (int i = 0; i < nn; i++)
{
if (i < low | i > high)
{
d[i] = H[i,i];
e[i] = 0.0;
}
for (int j = Math.Max(i-1,0); j < nn; j++)
norm = norm + Math.Abs(H[i,j]);
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -