?? os_os2.c
字號(hào):
** the PENDING_LOCK byte is temporary.
*/
newLocktype = pFile->locktype;
if( pFile->locktype==NO_LOCK
|| (locktype==EXCLUSIVE_LOCK && pFile->locktype==RESERVED_LOCK)
){
int cnt = 3;
LockArea.lOffset = PENDING_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
while( cnt-->0 && (res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L) )!=NO_ERROR ){
/* Try 3 times to get the pending lock. The pending lock might be
** held by another reader process who will release it momentarily.
*/
TRACE2( "could not get a PENDING lock. cnt=%d\n", cnt );
DosSleep(1);
}
gotPendingLock = res;
}
/* Acquire a shared lock
*/
if( locktype==SHARED_LOCK && res ){
assert( pFile->locktype==NO_LOCK );
res = getReadLock(pFile);
if( res == NO_ERROR ){
newLocktype = SHARED_LOCK;
}
}
/* Acquire a RESERVED lock
*/
if( locktype==RESERVED_LOCK && res ){
assert( pFile->locktype==SHARED_LOCK );
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
if( res == NO_ERROR ){
newLocktype = RESERVED_LOCK;
}
}
/* Acquire a PENDING lock
*/
if( locktype==EXCLUSIVE_LOCK && res ){
newLocktype = PENDING_LOCK;
gotPendingLock = 0;
}
/* Acquire an EXCLUSIVE lock
*/
if( locktype==EXCLUSIVE_LOCK && res ){
assert( pFile->locktype>=SHARED_LOCK );
res = unlockReadLock(pFile);
TRACE2( "unreadlock = %d\n", res );
LockArea.lOffset = SHARED_FIRST;
LockArea.lRange = SHARED_SIZE;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
res = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
if( res == NO_ERROR ){
newLocktype = EXCLUSIVE_LOCK;
}else{
TRACE2( "error-code = %d\n", res );
}
}
/* If we are holding a PENDING lock that ought to be released, then
** release it now.
*/
if( gotPendingLock && locktype==SHARED_LOCK ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
}
/* Update the state of the lock has held in the file descriptor then
** return the appropriate result code.
*/
if( res == NO_ERROR ){
rc = SQLITE_OK;
}else{
TRACE4( "LOCK FAILED %d trying for %d but got %d\n", pFile->h,
locktype, newLocktype );
rc = SQLITE_BUSY;
}
pFile->locktype = newLocktype;
return rc;
}
/*
** This routine checks if there is a RESERVED lock held on the specified
** file by this or any other process. If such a lock is held, return
** non-zero, otherwise zero.
*/
int os2CheckReservedLock( OsFile *id ){
APIRET rc = NO_ERROR;
os2File *pFile = (os2File*)id;
assert( pFile!=0 );
if( pFile->locktype>=RESERVED_LOCK ){
rc = 1;
TRACE3( "TEST WR-LOCK %d %d (local)\n", pFile->h, rc );
}else{
FILELOCK LockArea,
UnlockArea;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
LockArea.lOffset = RESERVED_BYTE;
LockArea.lRange = 1L;
UnlockArea.lOffset = 0L;
UnlockArea.lRange = 0L;
rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
if( rc == NO_ERROR ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
rc = DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
}
TRACE3( "TEST WR-LOCK %d %d (remote)\n", pFile->h, rc );
}
return rc;
}
/*
** Lower the locking level on file descriptor id to locktype. locktype
** must be either NO_LOCK or SHARED_LOCK.
**
** If the locking level of the file descriptor is already at or below
** the requested locking level, this routine is a no-op.
**
** It is not possible for this routine to fail if the second argument
** is NO_LOCK. If the second argument is SHARED_LOCK then this routine
** might return SQLITE_IOERR;
*/
int os2Unlock( OsFile *id, int locktype ){
int type;
APIRET rc = SQLITE_OK;
os2File *pFile = (os2File*)id;
FILELOCK LockArea,
UnlockArea;
memset(&LockArea, 0, sizeof(LockArea));
memset(&UnlockArea, 0, sizeof(UnlockArea));
assert( pFile!=0 );
assert( locktype<=SHARED_LOCK );
TRACE4( "UNLOCK %d to %d was %d\n", pFile->h, locktype, pFile->locktype );
type = pFile->locktype;
if( type>=EXCLUSIVE_LOCK ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = SHARED_FIRST;
UnlockArea.lRange = SHARED_SIZE;
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
if( locktype==SHARED_LOCK && getReadLock(pFile) != NO_ERROR ){
/* This should never happen. We should always be able to
** reacquire the read lock */
rc = SQLITE_IOERR;
}
}
if( type>=RESERVED_LOCK ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = RESERVED_BYTE;
UnlockArea.lRange = 1L;
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
}
if( locktype==NO_LOCK && type>=SHARED_LOCK ){
unlockReadLock(pFile);
}
if( type>=PENDING_LOCK ){
LockArea.lOffset = 0L;
LockArea.lRange = 0L;
UnlockArea.lOffset = PENDING_BYTE;
UnlockArea.lRange = 1L;
DosSetFileLocks( pFile->h, &UnlockArea, &LockArea, 2000L, 1L );
}
pFile->locktype = locktype;
return rc;
}
/*
** Turn a relative pathname into a full pathname. Return a pointer
** to the full pathname stored in space obtained from sqliteMalloc().
** The calling function is responsible for freeing this space once it
** is no longer needed.
*/
char *sqlite3Os2FullPathname( const char *zRelative ){
char *zFull = 0;
if( strchr(zRelative, ':') ){
sqlite3SetString( &zFull, zRelative, (char*)0 );
}else{
char zBuff[SQLITE_TEMPNAME_SIZE - 2] = {0};
char zDrive[1] = {0};
ULONG cbzFullLen = SQLITE_TEMPNAME_SIZE;
ULONG ulDriveNum = 0;
ULONG ulDriveMap = 0;
DosQueryCurrentDisk( &ulDriveNum, &ulDriveMap );
DosQueryCurrentDir( 0L, zBuff, &cbzFullLen );
zFull = sqliteMalloc( cbzFullLen );
sprintf( zDrive, "%c", (char)('A' + ulDriveNum - 1) );
sqlite3SetString( &zFull, zDrive, ":\\", zBuff, "\\", zRelative, (char*)0 );
}
return zFull;
}
/*
** The fullSync option is meaningless on os2, or correct me if I'm wrong. This is a no-op.
** From os_unix.c: Change the value of the fullsync flag in the given file descriptor.
** From os_unix.c: ((unixFile*)id)->fullSync = v;
*/
static void os2SetFullSync( OsFile *id, int v ){
return;
}
/*
** Return the underlying file handle for an OsFile
*/
static int os2FileHandle( OsFile *id ){
return (int)((os2File*)id)->h;
}
/*
** Return an integer that indices the type of lock currently held
** by this handle. (Used for testing and analysis only.)
*/
static int os2LockState( OsFile *id ){
return ((os2File*)id)->locktype;
}
/*
** This vector defines all the methods that can operate on an OsFile
** for os2.
*/
static const IoMethod sqlite3Os2IoMethod = {
os2Close,
os2OpenDirectory,
os2Read,
os2Write,
os2Seek,
os2Truncate,
os2Sync,
os2SetFullSync,
os2FileHandle,
os2FileSize,
os2Lock,
os2Unlock,
os2LockState,
os2CheckReservedLock,
};
/*
** Allocate memory for an OsFile. Initialize the new OsFile
** to the value given in pInit and return a pointer to the new
** OsFile. If we run out of memory, close the file and return NULL.
*/
int allocateOs2File( os2File *pInit, OsFile **pld ){
os2File *pNew;
pNew = sqliteMalloc( sizeof(*pNew) );
if( pNew==0 ){
DosClose( pInit->h );
*pld = 0;
return SQLITE_NOMEM;
}else{
*pNew = *pInit;
pNew->pMethod = &sqlite3Os2IoMethod;
pNew->locktype = NO_LOCK;
*pld = (OsFile*)pNew;
OpenCounter(+1);
return SQLITE_OK;
}
}
#endif /* SQLITE_OMIT_DISKIO */
/***************************************************************************
** Everything above deals with file I/O. Everything that follows deals
** with other miscellanous aspects of the operating system interface
****************************************************************************/
/*
** Get information to seed the random number generator. The seed
** is written into the buffer zBuf[256]. The calling function must
** supply a sufficiently large buffer.
*/
int sqlite3Os2RandomSeed( char *zBuf ){
/* We have to initialize zBuf to prevent valgrind from reporting
** errors. The reports issued by valgrind are incorrect - we would
** prefer that the randomness be increased by making use of the
** uninitialized space in zBuf - but valgrind errors tend to worry
** some users. Rather than argue, it seems easier just to initialize
** the whole array and silence valgrind, even if that means less randomness
** in the random seed.
**
** When testing, initializing zBuf[] to zero is all we do. That means
** that we always use the same random number sequence. This makes the
** tests repeatable.
*/
memset( zBuf, 0, 256 );
DosGetDateTime( (PDATETIME)zBuf );
return SQLITE_OK;
}
/*
** Sleep for a little while. Return the amount of time slept.
*/
int sqlite3Os2Sleep( int ms ){
DosSleep( ms );
return ms;
}
/*
** Static variables used for thread synchronization
*/
static int inMutex = 0;
#ifdef SQLITE_OS2_THREADS
static ULONG mutexOwner;
#endif
/*
** The following pair of routines implement mutual exclusion for
** multi-threaded processes. Only a single thread is allowed to
** executed code that is surrounded by EnterMutex() and LeaveMutex().
**
** SQLite uses only a single Mutex. There is not much critical
** code and what little there is executes quickly and without blocking.
*/
void sqlite3Os2EnterMutex(){
PTIB ptib;
#ifdef SQLITE_OS2_THREADS
DosEnterCritSec();
DosGetInfoBlocks( &ptib, NULL );
mutexOwner = ptib->tib_ptib2->tib2_ultid;
#endif
assert( !inMutex );
inMutex = 1;
}
void sqlite3Os2LeaveMutex(){
PTIB ptib;
assert( inMutex );
inMutex = 0;
#ifdef SQLITE_OS2_THREADS
DosGetInfoBlocks( &ptib, NULL );
assert( mutexOwner == ptib->tib_ptib2->tib2_ultid );
DosExitCritSec();
#endif
}
/*
** Return TRUE if the mutex is currently held.
**
** If the thisThreadOnly parameter is true, return true if and only if the
** calling thread holds the mutex. If the parameter is false, return
** true if any thread holds the mutex.
*/
int sqlite3Os2InMutex( int thisThreadOnly ){
#ifdef SQLITE_OS2_THREADS
PTIB ptib;
DosGetInfoBlocks( &ptib, NULL );
return inMutex>0 && (thisThreadOnly==0 || mutexOwner==ptib->tib_ptib2->tib2_ultid);
#else
return inMutex>0;
#endif
}
/*
** The following variable, if set to a non-zero value, becomes the result
** returned from sqlite3OsCurrentTime(). This is used for testing.
*/
#ifdef SQLITE_TEST
int sqlite3_current_time = 0;
#endif
/*
** Find the current time (in Universal Coordinated Time). Write the
** current time and date as a Julian Day number into *prNow and
** return 0. Return 1 if the time and date cannot be found.
*/
int sqlite3Os2CurrentTime( double *prNow ){
double now;
USHORT second, minute, hour,
day, month, year;
DATETIME dt;
DosGetDateTime( &dt );
second = (USHORT)dt.seconds;
minute = (USHORT)dt.minutes + dt.timezone;
hour = (USHORT)dt.hours;
day = (USHORT)dt.day;
month = (USHORT)dt.month;
year = (USHORT)dt.year;
/* Calculations from http://www.astro.keele.ac.uk/~rno/Astronomy/hjd.html
http://www.astro.keele.ac.uk/~rno/Astronomy/hjd-0.1.c */
/* Calculate the Julian days */
now = day - 32076 +
1461*(year + 4800 + (month - 14)/12)/4 +
367*(month - 2 - (month - 14)/12*12)/12 -
3*((year + 4900 + (month - 14)/12)/100)/4;
/* Add the fractional hours, mins and seconds */
now += (hour + 12.0)/24.0;
now += minute/1440.0;
now += second/86400.0;
*prNow = now;
#ifdef SQLITE_TEST
if( sqlite3_current_time ){
*prNow = sqlite3_current_time/86400.0 + 2440587.5;
}
#endif
return 0;
}
/*
** Remember the number of thread-specific-data blocks allocated.
** Use this to verify that we are not leaking thread-specific-data.
** Ticket #1601
*/
#ifdef SQLITE_TEST
int sqlite3_tsd_count = 0;
# define TSD_COUNTER_INCR InterlockedIncrement( &sqlite3_tsd_count )
# define TSD_COUNTER_DECR InterlockedDecrement( &sqlite3_tsd_count )
#else
# define TSD_COUNTER_INCR /* no-op */
# define TSD_COUNTER_DECR /* no-op */
#endif
/*
** If called with allocateFlag>1, then return a pointer to thread
** specific data for the current thread. Allocate and zero the
** thread-specific data if it does not already exist necessary.
**
** If called with allocateFlag==0, then check the current thread
** specific data. Return it if it exists. If it does not exist,
** then return NULL.
**
** If called with allocateFlag<0, check to see if the thread specific
** data is allocated and is all zero. If it is then deallocate it.
** Return a pointer to the thread specific data or NULL if it is
** unallocated or gets deallocated.
*/
ThreadData *sqlite3Os2ThreadSpecificData( int allocateFlag ){
static ThreadData **s_ppTsd = NULL;
static const ThreadData zeroData = {0, 0, 0};
ThreadData *pTsd;
if( !s_ppTsd ){
sqlite3OsEnterMutex();
if( !s_ppTsd ){
PULONG pul;
APIRET rc = DosAllocThreadLocalMemory(1, &pul);
if( rc != NO_ERROR ){
sqlite3OsLeaveMutex();
return 0;
}
s_ppTsd = (ThreadData **)pul;
}
sqlite3OsLeaveMutex();
}
pTsd = *s_ppTsd;
if( allocateFlag>0 ){
if( !pTsd ){
pTsd = sqlite3OsMalloc( sizeof(zeroData) );
if( pTsd ){
*pTsd = zeroData;
*s_ppTsd = pTsd;
TSD_COUNTER_INCR;
}
}
}else if( pTsd!=0 && allocateFlag<0
&& memcmp( pTsd, &zeroData, sizeof(ThreadData) )==0 ){
sqlite3OsFree(pTsd);
*s_ppTsd = NULL;
TSD_COUNTER_DECR;
pTsd = 0;
}
return pTsd;
}
#endif /* OS_OS2 */
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -