?? expr.c
字號:
/*
** 2001 September 15
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
*************************************************************************
** This file contains routines used for analyzing expressions and
** for generating VDBE code that evaluates expressions in SQLite.
**
** $Id: expr.c,v 1.31 2006/10/12 21:34:21 rmsimpson Exp $
*/
#include "sqliteInt.h"
#include <ctype.h>
/*
** Return the 'affinity' of the expression pExpr if any.
**
** If pExpr is a column, a reference to a column via an 'AS' alias,
** or a sub-select with a column as the return value, then the
** affinity of that column is returned. Otherwise, 0x00 is returned,
** indicating no affinity for the expression.
**
** i.e. the WHERE clause expresssions in the following statements all
** have an affinity:
**
** CREATE TABLE t1(a);
** SELECT * FROM t1 WHERE a;
** SELECT a AS b FROM t1 WHERE b;
** SELECT * FROM t1 WHERE (select a from t1);
*/
char sqlite3ExprAffinity(Expr *pExpr){
int op = pExpr->op;
if( op==TK_AS ){
return sqlite3ExprAffinity(pExpr->pLeft);
}
if( op==TK_SELECT ){
return sqlite3ExprAffinity(pExpr->pSelect->pEList->a[0].pExpr);
}
#ifndef SQLITE_OMIT_CAST
if( op==TK_CAST ){
return sqlite3AffinityType(&pExpr->token);
}
#endif
return pExpr->affinity;
}
/*
** Return the default collation sequence for the expression pExpr. If
** there is no default collation type, return 0.
*/
CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
CollSeq *pColl = 0;
if( pExpr ){
pColl = pExpr->pColl;
if( (pExpr->op==TK_AS || pExpr->op==TK_CAST) && !pColl ){
return sqlite3ExprCollSeq(pParse, pExpr->pLeft);
}
}
if( sqlite3CheckCollSeq(pParse, pColl) ){
pColl = 0;
}
return pColl;
}
/*
** pExpr is an operand of a comparison operator. aff2 is the
** type affinity of the other operand. This routine returns the
** type affinity that should be used for the comparison operator.
*/
char sqlite3CompareAffinity(Expr *pExpr, char aff2){
char aff1 = sqlite3ExprAffinity(pExpr);
if( aff1 && aff2 ){
/* Both sides of the comparison are columns. If one has numeric
** affinity, use that. Otherwise use no affinity.
*/
if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
return SQLITE_AFF_NUMERIC;
}else{
return SQLITE_AFF_NONE;
}
}else if( !aff1 && !aff2 ){
/* Neither side of the comparison is a column. Compare the
** results directly.
*/
return SQLITE_AFF_NONE;
}else{
/* One side is a column, the other is not. Use the columns affinity. */
assert( aff1==0 || aff2==0 );
return (aff1 + aff2);
}
}
/*
** pExpr is a comparison operator. Return the type affinity that should
** be applied to both operands prior to doing the comparison.
*/
static char comparisonAffinity(Expr *pExpr){
char aff;
assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
pExpr->op==TK_NE );
assert( pExpr->pLeft );
aff = sqlite3ExprAffinity(pExpr->pLeft);
if( pExpr->pRight ){
aff = sqlite3CompareAffinity(pExpr->pRight, aff);
}
else if( pExpr->pSelect ){
aff = sqlite3CompareAffinity(pExpr->pSelect->pEList->a[0].pExpr, aff);
}
else if( !aff ){
aff = SQLITE_AFF_NUMERIC;
}
return aff;
}
/*
** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
** idx_affinity is the affinity of an indexed column. Return true
** if the index with affinity idx_affinity may be used to implement
** the comparison in pExpr.
*/
int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
char aff = comparisonAffinity(pExpr);
switch( aff ){
case SQLITE_AFF_NONE:
return 1;
case SQLITE_AFF_TEXT:
return idx_affinity==SQLITE_AFF_TEXT;
default:
return sqlite3IsNumericAffinity(idx_affinity);
}
}
/*
** Return the P1 value that should be used for a binary comparison
** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
** If jumpIfNull is true, then set the low byte of the returned
** P1 value to tell the opcode to jump if either expression
** evaluates to NULL.
*/
static int binaryCompareP1(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
char aff = sqlite3ExprAffinity(pExpr2);
return ((int)sqlite3CompareAffinity(pExpr1, aff))+(jumpIfNull?0x100:0);
}
/*
** Return a pointer to the collation sequence that should be used by
** a binary comparison operator comparing pLeft and pRight.
**
** If the left hand expression has a collating sequence type, then it is
** used. Otherwise the collation sequence for the right hand expression
** is used, or the default (BINARY) if neither expression has a collating
** type.
*/
static CollSeq* binaryCompareCollSeq(Parse *pParse, Expr *pLeft, Expr *pRight){
CollSeq *pColl = sqlite3ExprCollSeq(pParse, pLeft);
if( !pColl ){
pColl = sqlite3ExprCollSeq(pParse, pRight);
}
return pColl;
}
/*
** Generate code for a comparison operator.
*/
static int codeCompare(
Parse *pParse, /* The parsing (and code generating) context */
Expr *pLeft, /* The left operand */
Expr *pRight, /* The right operand */
int opcode, /* The comparison opcode */
int dest, /* Jump here if true. */
int jumpIfNull /* If true, jump if either operand is NULL */
){
int p1 = binaryCompareP1(pLeft, pRight, jumpIfNull);
CollSeq *p3 = binaryCompareCollSeq(pParse, pLeft, pRight);
return sqlite3VdbeOp3(pParse->pVdbe, opcode, p1, dest, (void*)p3, P3_COLLSEQ);
}
/*
** Construct a new expression node and return a pointer to it. Memory
** for this node is obtained from sqliteMalloc(). The calling function
** is responsible for making sure the node eventually gets freed.
*/
Expr *sqlite3Expr(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
Expr *pNew;
pNew = sqliteMalloc( sizeof(Expr) );
if( pNew==0 ){
/* When malloc fails, delete pLeft and pRight. Expressions passed to
** this function must always be allocated with sqlite3Expr() for this
** reason.
*/
sqlite3ExprDelete(pLeft);
sqlite3ExprDelete(pRight);
return 0;
}
pNew->op = op;
pNew->pLeft = pLeft;
pNew->pRight = pRight;
pNew->iAgg = -1;
if( pToken ){
assert( pToken->dyn==0 );
pNew->span = pNew->token = *pToken;
}else if( pLeft && pRight ){
sqlite3ExprSpan(pNew, &pLeft->span, &pRight->span);
}
return pNew;
}
/*
** Works like sqlite3Expr() but frees its pLeft and pRight arguments
** if it fails due to a malloc problem.
*/
Expr *sqlite3ExprOrFree(int op, Expr *pLeft, Expr *pRight, const Token *pToken){
Expr *pNew = sqlite3Expr(op, pLeft, pRight, pToken);
if( pNew==0 ){
sqlite3ExprDelete(pLeft);
sqlite3ExprDelete(pRight);
}
return pNew;
}
/*
** When doing a nested parse, you can include terms in an expression
** that look like this: #0 #1 #2 ... These terms refer to elements
** on the stack. "#0" means the top of the stack.
** "#1" means the next down on the stack. And so forth.
**
** This routine is called by the parser to deal with on of those terms.
** It immediately generates code to store the value in a memory location.
** The returns an expression that will code to extract the value from
** that memory location as needed.
*/
Expr *sqlite3RegisterExpr(Parse *pParse, Token *pToken){
Vdbe *v = pParse->pVdbe;
Expr *p;
int depth;
if( pParse->nested==0 ){
sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", pToken);
return 0;
}
if( v==0 ) return 0;
p = sqlite3Expr(TK_REGISTER, 0, 0, pToken);
if( p==0 ){
return 0; /* Malloc failed */
}
depth = atoi((char*)&pToken->z[1]);
p->iTable = pParse->nMem++;
sqlite3VdbeAddOp(v, OP_Dup, depth, 0);
sqlite3VdbeAddOp(v, OP_MemStore, p->iTable, 1);
return p;
}
/*
** Join two expressions using an AND operator. If either expression is
** NULL, then just return the other expression.
*/
Expr *sqlite3ExprAnd(Expr *pLeft, Expr *pRight){
if( pLeft==0 ){
return pRight;
}else if( pRight==0 ){
return pLeft;
}else{
return sqlite3Expr(TK_AND, pLeft, pRight, 0);
}
}
/*
** Set the Expr.span field of the given expression to span all
** text between the two given tokens.
*/
void sqlite3ExprSpan(Expr *pExpr, Token *pLeft, Token *pRight){
assert( pRight!=0 );
assert( pLeft!=0 );
if( !sqlite3MallocFailed() && pRight->z && pLeft->z ){
assert( pLeft->dyn==0 || pLeft->z[pLeft->n]==0 );
if( pLeft->dyn==0 && pRight->dyn==0 ){
pExpr->span.z = pLeft->z;
pExpr->span.n = pRight->n + (pRight->z - pLeft->z);
}else{
pExpr->span.z = 0;
}
}
}
/*
** Construct a new expression node for a function with multiple
** arguments.
*/
Expr *sqlite3ExprFunction(ExprList *pList, Token *pToken){
Expr *pNew;
assert( pToken );
pNew = sqliteMalloc( sizeof(Expr) );
if( pNew==0 ){
sqlite3ExprListDelete(pList); /* Avoid leaking memory when malloc fails */
return 0;
}
pNew->op = TK_FUNCTION;
pNew->pList = pList;
assert( pToken->dyn==0 );
pNew->token = *pToken;
pNew->span = pNew->token;
return pNew;
}
/*
** Assign a variable number to an expression that encodes a wildcard
** in the original SQL statement.
**
** Wildcards consisting of a single "?" are assigned the next sequential
** variable number.
**
** Wildcards of the form "?nnn" are assigned the number "nnn". We make
** sure "nnn" is not too be to avoid a denial of service attack when
** the SQL statement comes from an external source.
**
** Wildcards of the form ":aaa" or "$aaa" are assigned the same number
** as the previous instance of the same wildcard. Or if this is the first
** instance of the wildcard, the next sequenial variable number is
** assigned.
*/
void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
Token *pToken;
if( pExpr==0 ) return;
pToken = &pExpr->token;
assert( pToken->n>=1 );
assert( pToken->z!=0 );
assert( pToken->z[0]!=0 );
if( pToken->n==1 ){
/* Wildcard of the form "?". Assign the next variable number */
pExpr->iTable = ++pParse->nVar;
}else if( pToken->z[0]=='?' ){
/* Wildcard of the form "?nnn". Convert "nnn" to an integer and
** use it as the variable number */
int i;
pExpr->iTable = i = atoi((char*)&pToken->z[1]);
if( i<1 || i>SQLITE_MAX_VARIABLE_NUMBER ){
sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
SQLITE_MAX_VARIABLE_NUMBER);
}
if( i>pParse->nVar ){
pParse->nVar = i;
}
}else{
/* Wildcards of the form ":aaa" or "$aaa". Reuse the same variable
** number as the prior appearance of the same name, or if the name
** has never appeared before, reuse the same variable number
*/
int i, n;
n = pToken->n;
for(i=0; i<pParse->nVarExpr; i++){
Expr *pE;
if( (pE = pParse->apVarExpr[i])!=0
&& pE->token.n==n
&& memcmp(pE->token.z, pToken->z, n)==0 ){
pExpr->iTable = pE->iTable;
break;
}
}
if( i>=pParse->nVarExpr ){
pExpr->iTable = ++pParse->nVar;
if( pParse->nVarExpr>=pParse->nVarExprAlloc-1 ){
pParse->nVarExprAlloc += pParse->nVarExprAlloc + 10;
sqliteReallocOrFree((void**)&pParse->apVarExpr,
pParse->nVarExprAlloc*sizeof(pParse->apVarExpr[0]) );
}
if( !sqlite3MallocFailed() ){
assert( pParse->apVarExpr!=0 );
pParse->apVarExpr[pParse->nVarExpr++] = pExpr;
}
}
}
}
/*
** Recursively delete an expression tree.
*/
void sqlite3ExprDelete(Expr *p){
if( p==0 ) return;
if( p->span.dyn ) sqliteFree((char*)p->span.z);
if( p->token.dyn ) sqliteFree((char*)p->token.z);
sqlite3ExprDelete(p->pLeft);
sqlite3ExprDelete(p->pRight);
sqlite3ExprListDelete(p->pList);
sqlite3SelectDelete(p->pSelect);
sqliteFree(p);
}
/*
** The Expr.token field might be a string literal that is quoted.
** If so, remove the quotation marks.
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -