?? vdbeaux.c
字號:
** 5 6 signed integer
** 6 8 signed integer
** 7 8 IEEE float
** 8 0 Integer constant 0
** 9 0 Integer constant 1
** 10,11 reserved for expansion
** N>=12 and even (N-12)/2 BLOB
** N>=13 and odd (N-13)/2 text
**
** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
** of SQLite will not understand those serial types.
*/
/*
** Return the serial-type for the value stored in pMem.
*/
u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
int flags = pMem->flags;
if( flags&MEM_Null ){
return 0;
}
if( flags&MEM_Int ){
/* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
# define MAX_6BYTE ((((i64)0x00001000)<<32)-1)
i64 i = pMem->i;
u64 u;
if( file_format>=4 && (i&1)==i ){
return 8+i;
}
u = i<0 ? -i : i;
if( u<=127 ) return 1;
if( u<=32767 ) return 2;
if( u<=8388607 ) return 3;
if( u<=2147483647 ) return 4;
if( u<=MAX_6BYTE ) return 5;
return 6;
}
if( flags&MEM_Real ){
return 7;
}
if( flags&MEM_Str ){
int n = pMem->n;
assert( n>=0 );
return ((n*2) + 13);
}
if( flags&MEM_Blob ){
return (pMem->n*2 + 12);
}
return 0;
}
/*
** Return the length of the data corresponding to the supplied serial-type.
*/
int sqlite3VdbeSerialTypeLen(u32 serial_type){
if( serial_type>=12 ){
return (serial_type-12)/2;
}else{
static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
return aSize[serial_type];
}
}
/*
** Write the serialized data blob for the value stored in pMem into
** buf. It is assumed that the caller has allocated sufficient space.
** Return the number of bytes written.
*/
int sqlite3VdbeSerialPut(unsigned char *buf, Mem *pMem, int file_format){
u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
int len;
/* Integer and Real */
if( serial_type<=7 && serial_type>0 ){
u64 v;
int i;
if( serial_type==7 ){
v = *(u64*)&pMem->r;
}else{
v = *(u64*)&pMem->i;
}
len = i = sqlite3VdbeSerialTypeLen(serial_type);
while( i-- ){
buf[i] = (v&0xFF);
v >>= 8;
}
return len;
}
/* String or blob */
if( serial_type>=12 ){
len = sqlite3VdbeSerialTypeLen(serial_type);
memcpy(buf, pMem->z, len);
return len;
}
/* NULL or constants 0 or 1 */
return 0;
}
/*
** Deserialize the data blob pointed to by buf as serial type serial_type
** and store the result in pMem. Return the number of bytes read.
*/
int sqlite3VdbeSerialGet(
const unsigned char *buf, /* Buffer to deserialize from */
u32 serial_type, /* Serial type to deserialize */
Mem *pMem /* Memory cell to write value into */
){
switch( serial_type ){
case 10: /* Reserved for future use */
case 11: /* Reserved for future use */
case 0: { /* NULL */
pMem->flags = MEM_Null;
break;
}
case 1: { /* 1-byte signed integer */
pMem->i = (signed char)buf[0];
pMem->flags = MEM_Int;
return 1;
}
case 2: { /* 2-byte signed integer */
pMem->i = (((signed char)buf[0])<<8) | buf[1];
pMem->flags = MEM_Int;
return 2;
}
case 3: { /* 3-byte signed integer */
pMem->i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
pMem->flags = MEM_Int;
return 3;
}
case 4: { /* 4-byte signed integer */
pMem->i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
pMem->flags = MEM_Int;
return 4;
}
case 5: { /* 6-byte signed integer */
u64 x = (((signed char)buf[0])<<8) | buf[1];
u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
x = (x<<32) | y;
pMem->i = *(i64*)&x;
pMem->flags = MEM_Int;
return 6;
}
case 6: /* 8-byte signed integer */
case 7: { /* IEEE floating point */
u64 x;
u32 y;
#if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
/* Verify that integers and floating point values use the same
** byte order. The byte order differs on some (broken) architectures.
*/
static const u64 t1 = ((u64)0x3ff00000)<<32;
assert( 1.0==*(double*)&t1 );
#endif
x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
x = (x<<32) | y;
if( serial_type==6 ){
pMem->i = *(i64*)&x;
pMem->flags = MEM_Int;
}else{
pMem->r = *(double*)&x;
pMem->flags = MEM_Real;
}
return 8;
}
case 8: /* Integer 0 */
case 9: { /* Integer 1 */
pMem->i = serial_type-8;
pMem->flags = MEM_Int;
return 0;
}
default: {
int len = (serial_type-12)/2;
pMem->z = (char *)buf;
pMem->n = len;
pMem->xDel = 0;
if( serial_type&0x01 ){
pMem->flags = MEM_Str | MEM_Ephem;
}else{
pMem->flags = MEM_Blob | MEM_Ephem;
}
return len;
}
}
return 0;
}
/*
** The header of a record consists of a sequence variable-length integers.
** These integers are almost always small and are encoded as a single byte.
** The following macro takes advantage this fact to provide a fast decode
** of the integers in a record header. It is faster for the common case
** where the integer is a single byte. It is a little slower when the
** integer is two or more bytes. But overall it is faster.
**
** The following expressions are equivalent:
**
** x = sqlite3GetVarint32( A, &B );
**
** x = GetVarint( A, B );
**
*/
#define GetVarint(A,B) ((B = *(A))<=0x7f ? 1 : sqlite3GetVarint32(A, &B))
/*
** This function compares the two table rows or index records specified by
** {nKey1, pKey1} and {nKey2, pKey2}, returning a negative, zero
** or positive integer if {nKey1, pKey1} is less than, equal to or
** greater than {nKey2, pKey2}. Both Key1 and Key2 must be byte strings
** composed by the OP_MakeRecord opcode of the VDBE.
*/
int sqlite3VdbeRecordCompare(
void *userData,
int nKey1, const void *pKey1,
int nKey2, const void *pKey2
){
KeyInfo *pKeyInfo = (KeyInfo*)userData;
u32 d1, d2; /* Offset into aKey[] of next data element */
u32 idx1, idx2; /* Offset into aKey[] of next header element */
u32 szHdr1, szHdr2; /* Number of bytes in header */
int i = 0;
int nField;
int rc = 0;
const unsigned char *aKey1 = (const unsigned char *)pKey1;
const unsigned char *aKey2 = (const unsigned char *)pKey2;
Mem mem1;
Mem mem2;
mem1.enc = pKeyInfo->enc;
mem2.enc = pKeyInfo->enc;
idx1 = GetVarint(aKey1, szHdr1);
d1 = szHdr1;
idx2 = GetVarint(aKey2, szHdr2);
d2 = szHdr2;
nField = pKeyInfo->nField;
while( idx1<szHdr1 && idx2<szHdr2 ){
u32 serial_type1;
u32 serial_type2;
/* Read the serial types for the next element in each key. */
idx1 += GetVarint( aKey1+idx1, serial_type1 );
if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
idx2 += GetVarint( aKey2+idx2, serial_type2 );
if( d2>=nKey2 && sqlite3VdbeSerialTypeLen(serial_type2)>0 ) break;
/* Assert that there is enough space left in each key for the blob of
** data to go with the serial type just read. This assert may fail if
** the file is corrupted. Then read the value from each key into mem1
** and mem2 respectively.
*/
d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
d2 += sqlite3VdbeSerialGet(&aKey2[d2], serial_type2, &mem2);
rc = sqlite3MemCompare(&mem1, &mem2, i<nField ? pKeyInfo->aColl[i] : 0);
if( mem1.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem1);
if( mem2.flags & MEM_Dyn ) sqlite3VdbeMemRelease(&mem2);
if( rc!=0 ){
break;
}
i++;
}
/* One of the keys ran out of fields, but all the fields up to that point
** were equal. If the incrKey flag is true, then the second key is
** treated as larger.
*/
if( rc==0 ){
if( pKeyInfo->incrKey ){
rc = -1;
}else if( d1<nKey1 ){
rc = 1;
}else if( d2<nKey2 ){
rc = -1;
}
}else if( pKeyInfo->aSortOrder && i<pKeyInfo->nField
&& pKeyInfo->aSortOrder[i] ){
rc = -rc;
}
return rc;
}
/*
** The argument is an index entry composed using the OP_MakeRecord opcode.
** The last entry in this record should be an integer (specifically
** an integer rowid). This routine returns the number of bytes in
** that integer.
*/
int sqlite3VdbeIdxRowidLen(const u8 *aKey){
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
sqlite3GetVarint32(aKey, &szHdr);
sqlite3GetVarint32(&aKey[szHdr-1], &typeRowid);
return sqlite3VdbeSerialTypeLen(typeRowid);
}
/*
** pCur points at an index entry created using the OP_MakeRecord opcode.
** Read the rowid (the last field in the record) and store it in *rowid.
** Return SQLITE_OK if everything works, or an error code otherwise.
*/
int sqlite3VdbeIdxRowid(BtCursor *pCur, i64 *rowid){
i64 nCellKey;
int rc;
u32 szHdr; /* Size of the header */
u32 typeRowid; /* Serial type of the rowid */
u32 lenRowid; /* Size of the rowid */
Mem m, v;
sqlite3BtreeKeySize(pCur, &nCellKey);
if( nCellKey<=0 ){
return SQLITE_CORRUPT_BKPT;
}
rc = sqlite3VdbeMemFromBtree(pCur, 0, nCellKey, 1, &m);
if( rc ){
return rc;
}
sqlite3GetVarint32((u8*)m.z, &szHdr);
sqlite3GetVarint32((u8*)&m.z[szHdr-1], &typeRowid);
lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
*rowid = v.i;
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** Compare the key of the index entry that cursor pC is point to against
** the key string in pKey (of length nKey). Write into *pRes a number
** that is negative, zero, or positive if pC is less than, equal to,
** or greater than pKey. Return SQLITE_OK on success.
**
** pKey is either created without a rowid or is truncated so that it
** omits the rowid at the end. The rowid at the end of the index entry
** is ignored as well.
*/
int sqlite3VdbeIdxKeyCompare(
Cursor *pC, /* The cursor to compare against */
int nKey, const u8 *pKey, /* The key to compare */
int *res /* Write the comparison result here */
){
i64 nCellKey;
int rc;
BtCursor *pCur = pC->pCursor;
int lenRowid;
Mem m;
sqlite3BtreeKeySize(pCur, &nCellKey);
if( nCellKey<=0 ){
*res = 0;
return SQLITE_OK;
}
rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, nCellKey, 1, &m);
if( rc ){
return rc;
}
lenRowid = sqlite3VdbeIdxRowidLen((u8*)m.z);
*res = sqlite3VdbeRecordCompare(pC->pKeyInfo, m.n-lenRowid, m.z, nKey, pKey);
sqlite3VdbeMemRelease(&m);
return SQLITE_OK;
}
/*
** This routine sets the value to be returned by subsequent calls to
** sqlite3_changes() on the database handle 'db'.
*/
void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
db->nChange = nChange;
db->nTotalChange += nChange;
}
/*
** Set a flag in the vdbe to update the change counter when it is finalised
** or reset.
*/
void sqlite3VdbeCountChanges(Vdbe *v){
v->changeCntOn = 1;
}
/*
** Mark every prepared statement associated with a database connection
** as expired.
**
** An expired statement means that recompilation of the statement is
** recommend. Statements expire when things happen that make their
** programs obsolete. Removing user-defined functions or collating
** sequences, or changing an authorization function are the types of
** things that make prepared statements obsolete.
*/
void sqlite3ExpirePreparedStatements(sqlite3 *db){
Vdbe *p;
for(p = db->pVdbe; p; p=p->pNext){
p->expired = 1;
}
}
/*
** Return the database associated with the Vdbe.
*/
sqlite3 *sqlite3VdbeDb(Vdbe *v){
return v->db;
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -