?? os_unix.c
字號(hào):
/*
** 2004 May 22
**
** The author disclaims copyright to this source code. In place of
** a legal notice, here is a blessing:
**
** May you do good and not evil.
** May you find forgiveness for yourself and forgive others.
** May you share freely, never taking more than you give.
**
******************************************************************************
**
** This file contains code that is specific to Unix systems.
*/
#include "sqliteInt.h"
#include "os.h"
#if OS_UNIX /* This file is used on unix only */
/* #define SQLITE_ENABLE_LOCKING_STYLE 0 */
/*
** These #defines should enable >2GB file support on Posix if the
** underlying operating system supports it. If the OS lacks
** large file support, these should be no-ops.
**
** Large file support can be disabled using the -DSQLITE_DISABLE_LFS switch
** on the compiler command line. This is necessary if you are compiling
** on a recent machine (ex: RedHat 7.2) but you want your code to work
** on an older machine (ex: RedHat 6.0). If you compile on RedHat 7.2
** without this option, LFS is enable. But LFS does not exist in the kernel
** in RedHat 6.0, so the code won't work. Hence, for maximum binary
** portability you should omit LFS.
*/
#ifndef SQLITE_DISABLE_LFS
# define _LARGE_FILE 1
# ifndef _FILE_OFFSET_BITS
# define _FILE_OFFSET_BITS 64
# endif
# define _LARGEFILE_SOURCE 1
#endif
/*
** standard include files.
*/
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <time.h>
#include <sys/time.h>
#include <errno.h>
#ifdef SQLITE_ENABLE_LOCKING_STYLE
#include <sys/ioctl.h>
#include <sys/param.h>
#include <sys/mount.h>
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
/*
** If we are to be thread-safe, include the pthreads header and define
** the SQLITE_UNIX_THREADS macro.
*/
#if defined(THREADSAFE) && THREADSAFE
# include <pthread.h>
# define SQLITE_UNIX_THREADS 1
#endif
/*
** Default permissions when creating a new file
*/
#ifndef SQLITE_DEFAULT_FILE_PERMISSIONS
# define SQLITE_DEFAULT_FILE_PERMISSIONS 0644
#endif
/*
** The unixFile structure is subclass of OsFile specific for the unix
** protability layer.
*/
typedef struct unixFile unixFile;
struct unixFile {
IoMethod const *pMethod; /* Always the first entry */
struct openCnt *pOpen; /* Info about all open fd's on this inode */
struct lockInfo *pLock; /* Info about locks on this inode */
#ifdef SQLITE_ENABLE_LOCKING_STYLE
void *lockingContext; /* Locking style specific state */
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
int h; /* The file descriptor */
unsigned char locktype; /* The type of lock held on this fd */
unsigned char isOpen; /* True if needs to be closed */
unsigned char fullSync; /* Use F_FULLSYNC if available */
int dirfd; /* File descriptor for the directory */
i64 offset; /* Seek offset */
#ifdef SQLITE_UNIX_THREADS
pthread_t tid; /* The thread that "owns" this OsFile */
#endif
};
/*
** Provide the ability to override some OS-layer functions during
** testing. This is used to simulate OS crashes to verify that
** commits are atomic even in the event of an OS crash.
*/
#ifdef SQLITE_CRASH_TEST
extern int sqlite3CrashTestEnable;
extern int sqlite3CrashOpenReadWrite(const char*, OsFile**, int*);
extern int sqlite3CrashOpenExclusive(const char*, OsFile**, int);
extern int sqlite3CrashOpenReadOnly(const char*, OsFile**, int);
# define CRASH_TEST_OVERRIDE(X,A,B,C) \
if(sqlite3CrashTestEnable){ return X(A,B,C); }
#else
# define CRASH_TEST_OVERRIDE(X,A,B,C) /* no-op */
#endif
/*
** Include code that is common to all os_*.c files
*/
#include "os_common.h"
/*
** Do not include any of the File I/O interface procedures if the
** SQLITE_OMIT_DISKIO macro is defined (indicating that the database
** will be in-memory only)
*/
#ifndef SQLITE_OMIT_DISKIO
/*
** Define various macros that are missing from some systems.
*/
#ifndef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifdef SQLITE_DISABLE_LFS
# undef O_LARGEFILE
# define O_LARGEFILE 0
#endif
#ifndef O_NOFOLLOW
# define O_NOFOLLOW 0
#endif
#ifndef O_BINARY
# define O_BINARY 0
#endif
/*
** The DJGPP compiler environment looks mostly like Unix, but it
** lacks the fcntl() system call. So redefine fcntl() to be something
** that always succeeds. This means that locking does not occur under
** DJGPP. But it's DOS - what did you expect?
*/
#ifdef __DJGPP__
# define fcntl(A,B,C) 0
#endif
/*
** The threadid macro resolves to the thread-id or to 0. Used for
** testing and debugging only.
*/
#ifdef SQLITE_UNIX_THREADS
#define threadid pthread_self()
#else
#define threadid 0
#endif
/*
** Set or check the OsFile.tid field. This field is set when an OsFile
** is first opened. All subsequent uses of the OsFile verify that the
** same thread is operating on the OsFile. Some operating systems do
** not allow locks to be overridden by other threads and that restriction
** means that sqlite3* database handles cannot be moved from one thread
** to another. This logic makes sure a user does not try to do that
** by mistake.
**
** Version 3.3.1 (2006-01-15): OsFiles can be moved from one thread to
** another as long as we are running on a system that supports threads
** overriding each others locks (which now the most common behavior)
** or if no locks are held. But the OsFile.pLock field needs to be
** recomputed because its key includes the thread-id. See the
** transferOwnership() function below for additional information
*/
#if defined(SQLITE_UNIX_THREADS)
# define SET_THREADID(X) (X)->tid = pthread_self()
# define CHECK_THREADID(X) (threadsOverrideEachOthersLocks==0 && \
!pthread_equal((X)->tid, pthread_self()))
#else
# define SET_THREADID(X)
# define CHECK_THREADID(X) 0
#endif
/*
** Here is the dirt on POSIX advisory locks: ANSI STD 1003.1 (1996)
** section 6.5.2.2 lines 483 through 490 specify that when a process
** sets or clears a lock, that operation overrides any prior locks set
** by the same process. It does not explicitly say so, but this implies
** that it overrides locks set by the same process using a different
** file descriptor. Consider this test case:
**
** int fd1 = open("./file1", O_RDWR|O_CREAT, 0644);
** int fd2 = open("./file2", O_RDWR|O_CREAT, 0644);
**
** Suppose ./file1 and ./file2 are really the same file (because
** one is a hard or symbolic link to the other) then if you set
** an exclusive lock on fd1, then try to get an exclusive lock
** on fd2, it works. I would have expected the second lock to
** fail since there was already a lock on the file due to fd1.
** But not so. Since both locks came from the same process, the
** second overrides the first, even though they were on different
** file descriptors opened on different file names.
**
** Bummer. If you ask me, this is broken. Badly broken. It means
** that we cannot use POSIX locks to synchronize file access among
** competing threads of the same process. POSIX locks will work fine
** to synchronize access for threads in separate processes, but not
** threads within the same process.
**
** To work around the problem, SQLite has to manage file locks internally
** on its own. Whenever a new database is opened, we have to find the
** specific inode of the database file (the inode is determined by the
** st_dev and st_ino fields of the stat structure that fstat() fills in)
** and check for locks already existing on that inode. When locks are
** created or removed, we have to look at our own internal record of the
** locks to see if another thread has previously set a lock on that same
** inode.
**
** The OsFile structure for POSIX is no longer just an integer file
** descriptor. It is now a structure that holds the integer file
** descriptor and a pointer to a structure that describes the internal
** locks on the corresponding inode. There is one locking structure
** per inode, so if the same inode is opened twice, both OsFile structures
** point to the same locking structure. The locking structure keeps
** a reference count (so we will know when to delete it) and a "cnt"
** field that tells us its internal lock status. cnt==0 means the
** file is unlocked. cnt==-1 means the file has an exclusive lock.
** cnt>0 means there are cnt shared locks on the file.
**
** Any attempt to lock or unlock a file first checks the locking
** structure. The fcntl() system call is only invoked to set a
** POSIX lock if the internal lock structure transitions between
** a locked and an unlocked state.
**
** 2004-Jan-11:
** More recent discoveries about POSIX advisory locks. (The more
** I discover, the more I realize the a POSIX advisory locks are
** an abomination.)
**
** If you close a file descriptor that points to a file that has locks,
** all locks on that file that are owned by the current process are
** released. To work around this problem, each OsFile structure contains
** a pointer to an openCnt structure. There is one openCnt structure
** per open inode, which means that multiple OsFiles can point to a single
** openCnt. When an attempt is made to close an OsFile, if there are
** other OsFiles open on the same inode that are holding locks, the call
** to close() the file descriptor is deferred until all of the locks clear.
** The openCnt structure keeps a list of file descriptors that need to
** be closed and that list is walked (and cleared) when the last lock
** clears.
**
** First, under Linux threads, because each thread has a separate
** process ID, lock operations in one thread do not override locks
** to the same file in other threads. Linux threads behave like
** separate processes in this respect. But, if you close a file
** descriptor in linux threads, all locks are cleared, even locks
** on other threads and even though the other threads have different
** process IDs. Linux threads is inconsistent in this respect.
** (I'm beginning to think that linux threads is an abomination too.)
** The consequence of this all is that the hash table for the lockInfo
** structure has to include the process id as part of its key because
** locks in different threads are treated as distinct. But the
** openCnt structure should not include the process id in its
** key because close() clears lock on all threads, not just the current
** thread. Were it not for this goofiness in linux threads, we could
** combine the lockInfo and openCnt structures into a single structure.
**
** 2004-Jun-28:
** On some versions of linux, threads can override each others locks.
** On others not. Sometimes you can change the behavior on the same
** system by setting the LD_ASSUME_KERNEL environment variable. The
** POSIX standard is silent as to which behavior is correct, as far
** as I can tell, so other versions of unix might show the same
** inconsistency. There is no little doubt in my mind that posix
** advisory locks and linux threads are profoundly broken.
**
** To work around the inconsistencies, we have to test at runtime
** whether or not threads can override each others locks. This test
** is run once, the first time any lock is attempted. A static
** variable is set to record the results of this test for future
** use.
*/
/*
** An instance of the following structure serves as the key used
** to locate a particular lockInfo structure given its inode.
**
** If threads cannot override each others locks, then we set the
** lockKey.tid field to the thread ID. If threads can override
** each others locks then tid is always set to zero. tid is omitted
** if we compile without threading support.
*/
struct lockKey {
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
#ifdef SQLITE_UNIX_THREADS
pthread_t tid; /* Thread ID or zero if threads can override each other */
#endif
};
/*
** An instance of the following structure is allocated for each open
** inode on each thread with a different process ID. (Threads have
** different process IDs on linux, but not on most other unixes.)
**
** A single inode can have multiple file descriptors, so each OsFile
** structure contains a pointer to an instance of this object and this
** object keeps a count of the number of OsFiles pointing to it.
*/
struct lockInfo {
struct lockKey key; /* The lookup key */
int cnt; /* Number of SHARED locks held */
int locktype; /* One of SHARED_LOCK, RESERVED_LOCK etc. */
int nRef; /* Number of pointers to this structure */
};
/*
** An instance of the following structure serves as the key used
** to locate a particular openCnt structure given its inode. This
** is the same as the lockKey except that the thread ID is omitted.
*/
struct openKey {
dev_t dev; /* Device number */
ino_t ino; /* Inode number */
};
/*
** An instance of the following structure is allocated for each open
** inode. This structure keeps track of the number of locks on that
** inode. If a close is attempted against an inode that is holding
** locks, the close is deferred until all locks clear by adding the
** file descriptor to be closed to the pending list.
*/
struct openCnt {
struct openKey key; /* The lookup key */
int nRef; /* Number of pointers to this structure */
int nLock; /* Number of outstanding locks */
int nPending; /* Number of pending close() operations */
int *aPending; /* Malloced space holding fd's awaiting a close() */
};
/*
** These hash tables map inodes and file descriptors (really, lockKey and
** openKey structures) into lockInfo and openCnt structures. Access to
** these hash tables must be protected by a mutex.
*/
static Hash lockHash = {SQLITE_HASH_BINARY, 0, 0, 0,
sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
static Hash openHash = {SQLITE_HASH_BINARY, 0, 0, 0,
sqlite3ThreadSafeMalloc, sqlite3ThreadSafeFree, 0, 0};
#ifdef SQLITE_ENABLE_LOCKING_STYLE
/*
** The locking styles are associated with the different file locking
** capabilities supported by different file systems.
**
** POSIX locking style fully supports shared and exclusive byte-range locks
** ADP locking only supports exclusive byte-range locks
** FLOCK only supports a single file-global exclusive lock
** DOTLOCK isn't a true locking style, it refers to the use of a special
** file named the same as the database file with a '.lock' extension, this
** can be used on file systems that do not offer any reliable file locking
** NO locking means that no locking will be attempted, this is only used for
** read-only file systems currently
** UNSUPPORTED means that no locking will be attempted, this is only used for
** file systems that are known to be unsupported
*/
typedef enum {
posixLockingStyle = 0, /* standard posix-advisory locks */
afpLockingStyle, /* use afp locks */
flockLockingStyle, /* use flock() */
dotlockLockingStyle, /* use <file>.lock files */
noLockingStyle, /* useful for read-only file system */
unsupportedLockingStyle /* indicates unsupported file system */
} sqlite3LockingStyle;
#endif /* SQLITE_ENABLE_LOCKING_STYLE */
#ifdef SQLITE_UNIX_THREADS
/*
** This variable records whether or not threads can override each others
** locks.
**
** 0: No. Threads cannot override each others locks.
** 1: Yes. Threads can override each others locks.
** -1: We don't know yet.
**
** On some systems, we know at compile-time if threads can override each
** others locks. On those systems, the SQLITE_THREAD_OVERRIDE_LOCK macro
** will be set appropriately. On other systems, we have to check at
** runtime. On these latter systems, SQLTIE_THREAD_OVERRIDE_LOCK is
** undefined.
**
** This variable normally has file scope only. But during testing, we make
** it a global so that the test code can change its value in order to verify
** that the right stuff happens in either case.
*/
#ifndef SQLITE_THREAD_OVERRIDE_LOCK
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -