?? jpegencoder.java
字號:
PutBits -= 8; } if (PutBits > 0) { int c = ((PutBuffer >> 16) & 0xFF); try { outStream.write(c); } catch (IOException e) { System.out.println("IO Error: " + e.getMessage()); } } } /* * Initialisation of the Huffman codes for Luminance and Chrominance. * This code results in the same tables created in the IJG Jpeg-6a * library. */ public void initHuf() { DC_matrix0 = new int[12][2]; DC_matrix1 = new int[12][2]; AC_matrix0 = new int[255][2]; AC_matrix1 = new int[255][2]; DC_matrix = new Object[2]; AC_matrix = new Object[2]; int p; int l; int i; int lastp; int si; int code; int[] huffsize = new int[257]; int[] huffcode = new int[257]; /* * init of the DC values for the chrominance * [][0] is the code [][1] is the number of bit */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= bitsDCchrominance[l]; i++) { huffsize[p++] = l; } } huffsize[p] = 0; lastp = p; code = 0; si = huffsize[0]; p = 0; while (huffsize[p] != 0) { while (huffsize[p] == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } for (p = 0; p < lastp; p++) { DC_matrix1[valDCchrominance[p]][0] = huffcode[p]; DC_matrix1[valDCchrominance[p]][1] = huffsize[p]; } /* * Init of the AC hufmann code for the chrominance * matrix [][][0] is the code & matrix[][][1] is the number of bit needed */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= bitsACchrominance[l]; i++) { huffsize[p++] = l; } } huffsize[p] = 0; lastp = p; code = 0; si = huffsize[0]; p = 0; while (huffsize[p] != 0) { while (huffsize[p] == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } for (p = 0; p < lastp; p++) { AC_matrix1[valACchrominance[p]][0] = huffcode[p]; AC_matrix1[valACchrominance[p]][1] = huffsize[p]; } /* * init of the DC values for the luminance * [][0] is the code [][1] is the number of bit */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= bitsDCluminance[l]; i++) { huffsize[p++] = l; } } huffsize[p] = 0; lastp = p; code = 0; si = huffsize[0]; p = 0; while (huffsize[p] != 0) { while (huffsize[p] == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } for (p = 0; p < lastp; p++) { DC_matrix0[valDCluminance[p]][0] = huffcode[p]; DC_matrix0[valDCluminance[p]][1] = huffsize[p]; } /* * Init of the AC hufmann code for luminance * matrix [][][0] is the code & matrix[][][1] is the number of bit */ p = 0; for (l = 1; l <= 16; l++) { for (i = 1; i <= bitsACluminance[l]; i++) { huffsize[p++] = l; } } huffsize[p] = 0; lastp = p; code = 0; si = huffsize[0]; p = 0; while (huffsize[p] != 0) { while (huffsize[p] == si) { huffcode[p++] = code; code++; } code <<= 1; si++; } for (int q = 0; q < lastp; q++) { AC_matrix0[valACluminance[q]][0] = huffcode[q]; AC_matrix0[valACluminance[q]][1] = huffsize[q]; } DC_matrix[0] = DC_matrix0; DC_matrix[1] = DC_matrix1; AC_matrix[0] = AC_matrix0; AC_matrix[1] = AC_matrix1; }}/* * JpegInfo - Given an image, sets default information about it and divides * it into its constituant components, downsizing those that need to be. */class JpegInfo { String Comment; public Image imageobj; public int imageHeight; public int imageWidth; public int[] BlockWidth; public int[] BlockHeight; // the following are set as the default public int Precision = 8; public int NumberOfComponents = 3; public Object[] Components; public int[] CompID = { 1, 2, 3 }; public int[] HsampFactor = { 1, 1, 1 }; public int[] VsampFactor = { 1, 1, 1 }; public int[] QtableNumber = { 0, 1, 1 }; public int[] DCtableNumber = { 0, 1, 1 }; public int[] ACtableNumber = { 0, 1, 1 }; public boolean[] lastColumnIsDummy = { false, false, false }; public boolean[] lastRowIsDummy = { false, false, false }; public int Ss = 0; public int Se = 63; public int Ah = 0; public int Al = 0; public int[] compWidth; public int[] compHeight; public int MaxHsampFactor; public int MaxVsampFactor; public JpegInfo(Image image) { Components = new Object[NumberOfComponents]; compWidth = new int[NumberOfComponents]; compHeight = new int[NumberOfComponents]; BlockWidth = new int[NumberOfComponents]; BlockHeight = new int[NumberOfComponents]; imageobj = image; imageWidth = image.getWidth(null); imageHeight = image.getHeight(null); Comment = "JPEG Encoder Copyright 1998, James R. Weeks and BioElectroMech. "; getYCCArray(); } public void setComment(String comment) { Comment.concat(comment); } public String getComment() { return Comment; /* * This method creates and fills three arrays, Y, Cb, and Cr using the * input image. */ private void getYCCArray() { int[] values = new int[imageWidth * imageHeight]; int r; int g; int b; int y; int x; // In order to minimize the chance that grabPixels will throw an exception // it may be necessary to grab some pixels every few scanlines and process // those before going for more. The time expense may be prohibitive. // However, for a situation where memory overhead is a concern, this may be // the only choice. PixelGrabber grabber = new PixelGrabber(imageobj.getSource(), 0, 0, imageWidth, imageHeight, values, 0, imageWidth); MaxHsampFactor = 1; MaxVsampFactor = 1; for (y = 0; y < NumberOfComponents; y++) { MaxHsampFactor = Math.max(MaxHsampFactor, HsampFactor[y]); MaxVsampFactor = Math.max(MaxVsampFactor, VsampFactor[y]); } for (y = 0; y < NumberOfComponents; y++) { compWidth[y] = ((((imageWidth % 8) != 0) ? (((int) Math.ceil((double) imageWidth / 8.0)) * 8) : imageWidth) / MaxHsampFactor) * HsampFactor[y]; if (compWidth[y] != ((imageWidth / MaxHsampFactor) * HsampFactor[y])) { lastColumnIsDummy[y] = true; } // results in a multiple of 8 for compWidth // this will make the rest of the program fail for the unlikely // event that someone tries to compress an 16 x 16 pixel image // which would of course be worse than pointless BlockWidth[y] = (int) Math.ceil((double) compWidth[y] / 8.0); compHeight[y] = ((((imageHeight % 8) != 0) ? (((int) Math.ceil((double) imageHeight / 8.0)) * 8) : imageHeight) / MaxVsampFactor) * VsampFactor[y]; if (compHeight[y] != ((imageHeight / MaxVsampFactor) * VsampFactor[y])) { lastRowIsDummy[y] = true; } BlockHeight[y] = (int) Math.ceil((double) compHeight[y] / 8.0); } try { if (grabber.grabPixels() != true) { try { throw new AWTException("Grabber returned false: " + grabber.status()); } catch (Exception e) { } ; } } catch (InterruptedException e) { } ; float[][] Y = new float[compHeight[0]][compWidth[0]]; float[][] Cr1 = new float[compHeight[0]][compWidth[0]]; float[][] Cb1 = new float[compHeight[0]][compWidth[0]]; float[][] Cb2 = new float[compHeight[1]][compWidth[1]]; float[][] Cr2 = new float[compHeight[2]][compWidth[2]]; int index = 0; for (y = 0; y < imageHeight; ++y) { for (x = 0; x < imageWidth; ++x) { r = ((values[index] >> 16) & 0xff); g = ((values[index] >> 8) & 0xff); b = (values[index] & 0xff); // The following three lines are a more correct color conversion but // the current conversion technique is sufficient and results in a higher // compression rate. // Y[y][x] = 16 + (float)(0.8588*(0.299 * (float)r + 0.587 * (float)g + 0.114 * (float)b )); // Cb1[y][x] = 128 + (float)(0.8784*(-0.16874 * (float)r - 0.33126 * (float)g + 0.5 * (float)b)); // Cr1[y][x] = 128 + (float)(0.8784*(0.5 * (float)r - 0.41869 * (float)g - 0.08131 * (float)b)); Y[y][x] = (float) (((0.299 * (float) r) + (0.587 * (float) g) + (0.114 * (float) b))); Cb1[y][x] = 128 + (float) (((-0.16874 * (float) r) - (0.33126 * (float) g) + (0.5 * (float) b))); Cr1[y][x] = 128 + (float) (((0.5 * (float) r) - (0.41869 * (float) g) - (0.08131 * (float) b))); index++; } } // Need a way to set the H and V sample factors before allowing downsampling. // For now (04/04/98) downsampling must be hard coded. // Until a better downsampler is implemented, this will not be done. // Downsampling is currently supported. The downsampling method here // is a simple box filter. Components[0] = Y; // Cb2 = DownSample(Cb1, 1); Components[1] = Cb1; // Cr2 = DownSample(Cr1, 2); Components[2] = Cr1; } float[][] DownSample(float[][] C, int comp) { int inrow; int incol; int outrow; int outcol; float[][] output; int temp; int bias; inrow = 0; incol = 0; output = new float[compHeight[comp]][compWidth[comp]]; for (outrow = 0; outrow < compHeight[comp]; outrow++) { bias = 1; for (outcol = 0; outcol < compWidth[comp]; outcol++) { output[outrow][outcol] = (C[inrow][incol++] + C[inrow++][incol--] + C[inrow][incol++] + C[inrow--][incol++] + (float) bias) / (float) 4.0; bias ^= 3; } inrow += 2; incol = 0; } return output; }}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -