?? gaus_cdf.m
字號:
function [y,x] = gaus_cdf(mean,var,nx)
% GAUS_CDF .... Evaluates and plots the cumulative distribution function of a
% Gaussian random variable.
%
% GAUS_CDF(MEAN,VAR) plots the cdf of the Gaussian random variable with
% parameters MEAN and VARIANCE. This function uses the error
% function ERF from the MATLAB library.
% GAUS_CDF(MEAN,VARIANCE,N), where N is a scalar, plots the cdf
% evaluated at N bins.
% GAUS_CDF(MEAN,VARIANCE,X), where X is a vector, plots the cdf
% using the bins specified in X.
% [F,X] = GAUS_CDF(...) does not draw a graph, but returns vectors
% F and X such that PLOT(X,F) is the cdf.
% [F] = GAUS_CDF(...) does not draw a graph, but returns vector F which
% contains computed values of the cdf only.
%
% See also GAUSS_PDF,GAUSS,CDF.
% AUTHORS : M. Zeytinoglu & N. W. Ma
% Department of Electrical & Computer Engineering
% Ryerson Polytechnic University
% Toronto, Ontario, CANADA
%
% DATE : August 1991.
% VERSION : 1.0
%===========================================================================
% Modifications history:
% ----------------------
% o Added "checking" 11.30.1992 MZ
% o Tested (and modified) under MATLAB 4.0/4.1 08.16.1993 MZ
%===========================================================================
global START_OK;
global BELL;
global WARNING;
check;
%------------------------------------------------------------------------
% Define parameters
%------------------------------------------------------------------------
nx_default = 20;
kp_default = 4.0;
%------------------------------------------------------------------------
% Check for errors
%------------------------------------------------------------------------
if ((nargin ~= 2) & (nargin ~= 3))
error(eval('eval(BELL),eval(WARNING),help gaus_cdf'));
return;
end
if (var < 0)
error('Variance must be non-negative')
end
%------------------------------------------------------------------------
% Prepare absicca vector and other parameters
%------------------------------------------------------------------------
if (nargin == 2)
nx = nx_default;
end
if (length(nx) == 1)
xmin = mean - (kp_default)*sqrt(var);
xmax = mean + (kp_default)*sqrt(var);
dx = (xmax-xmin)/nx;
nx = [xmin:dx:xmax];
end
%------------------------------------------------------------------------
% Evaluate the pdf with "mean" and "var" parameters at nx
%------------------------------------------------------------------------
cdf = (1/2)*(1-erf((mean-nx)/sqrt(2*var)));
%------------------------------------------------------------------------
% Output routines
%------------------------------------------------------------------------
if (nargout == 0)
plot(nx,cdf), ...
grid on, ...
title('Gaussian CDF')
elseif (nargout == 1)
y = cdf;
else
y = cdf;
x = nx;
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -