亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來(lái)到蟲(chóng)蟲(chóng)下載站! | ?? 資源下載 ?? 資源專(zhuān)輯 ?? 關(guān)于我們
? 蟲(chóng)蟲(chóng)下載站

?? datapage.c

?? codewarrior hc12 生成庫(kù)函數(shù)源碼
?? C
?? 第 1 頁(yè) / 共 5 頁(yè)
字號(hào):
        MOVW    0,SP, 1,+SP       ;// move return address
        RTS
  }
#endif /* USE_SEVERAL_PAGES */
}

/*--------------------------- _FAR_COPY_RC --------------------------------
  This runtime routine is used to access paged memory via a runtime function.
  It may also be used if the compiler  option -Cp is not used with the runtime argument.

  Arguments :
  - offset part of the source int the X register
  - page part of the source in the A register
  - offset part of the dest int the Y register
  - page part of the dest in the B register
  - number of bytes to be copied is defined by the next 2 bytes after the return address.

  Result :
  - memory area copied
  - no registers are saved, i.e. all registers may be destroyed
  - all page register still contain the same value as before the call
  - the function returns after the constant defining the number of bytes to be copied


  stack-structure at the loop-label:
     0,SP : destination offset
     2,SP : source page
     3,SP : destination page
     4,SP : source offset
     6,SP : points to length to be copied. This function returns after the size

  A usual call to this function looks like:

  struct Huge src, dest;
    ; ...
    LDX  #src
    LDAA #PAGE(src)
    LDY  #dest
    LDAB #PAGE(dest)
    JSR  _FAR_COPY_RC
    DC.W sizeof(struct Huge)
    ; ...

  --------------------------- _FAR_COPY_RC ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY_RC(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDY     6,SP              ;// Load Return address
        LDX     2,Y+              ;// Load Size to copy
        STY     6,SP              ;// Store adjusted return address
loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LEAS    6,SP              ;// release stack
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS                       ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        PSHY                      ;// temporary space
        LDY     4,SP              ;// load return address
        ADDD    2,Y+              ;// calculate source end address. Increment return address
        STY     4,SP
        PULY
        PSHD                      ;// store src end address
        LDAB    2,SP              ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    4,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     1,SP
        BNE     loop

        LDAA    5,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        _SRET                     ;// debug info only: This is the last instr of a function with a special return
        RTS
  }
#endif
}

/*--------------------------- _FAR_COPY --------------------------------

  The _FAR_COPY runtime routine was used to copied large memory blocks in previous compiler releases.
  However this release now does use _FAR_COPY_RC instead. The only difference is how the size of 
  the area to be copied is passed into the function. For _FAR_COPY the size is passed on the stack just
  above the return address. _FAR_COPY_RC does expect the return address just after the JSR _FAR_COPY_RC call
  in the code of the caller. This allows for denser code calling _FAR_COPY_RC but does also need a slightly
  larger runtime routine and it is slightly slower.
  The _FAR_COPY routine is here now mainly for compatibility with previous releases. 
  The current compiler does not use it. 
  
--------------------------- _FAR_COPY ----------------------------------*/

#ifdef __cplusplus
extern "C"
#endif
#pragma NO_ENTRY
#pragma NO_EXIT
#pragma NO_FRAME

void NEAR _FAR_COPY(void) {
#if USE_SEVERAL_PAGES
  __asm {
        DEX                       ;// source addr-=1, because loop counter ends at 1
        PSHX                      ;// save source offset
        PSHD                      ;// save both pages
        DEY                       ;// destination addr-=1, because loop counter ends at 1
        PSHY                      ;// save destination offset
        LDX     8,SP              ;// load counter, assuming counter > 0

loop:
        LDD     4,SP              ;// load source offset
        LEAY    D,X               ;// calculate actual source address
        LDAB    2,SP              ;// load source page
        __PIC_JSR(_LOAD_FAR_8)    ;// load 1 source byte
        PSHB                      ;// save value
        LDD     0+1,SP            ;// load destination offset
        LEAY    D,X               ;// calculate actual destination address
        PULA                      ;// restore value
        LDAB    3,SP              ;// load destination page
        __PIC_JSR(_STORE_FAR_8)   ;// store one byte
        DEX
        BNE     loop
        LDX     6,SP              ;// load return address
        LEAS    10,SP             ;// release stack
        JMP     0,X               ;// return
  }
#else
  __asm {
        PSHD                      ;// store page registers
        TFR     X,D
        ADDD    4,SP              ;// calculate source end address
        STD     4,SP
        PULB                      ;// reload source page
        LDAA    PAGE_ADDR         ;// save page register
        PSHA
loop:
        STAB    PAGE_ADDR         ;// set source page
        LDAA    1,X+              ;// load value
        MOVB    1,SP, PAGE_ADDR   ;// set destination page
        STAA    1,Y+
        CPX     4,SP
        BNE     loop

        LDAA    2,SP+             ;// restore old page value and release stack
        STAA    PAGE_ADDR         ;// store it into page register
        LDX     4,SP+             ;// release stack and load return address
        JMP     0,X               ;// return
  }
#endif
}

#else  /* __HCS12X__  */

/*
  The HCS12X knows two different kind of addresses:
    - Logical addresses. E.g.
       MOVB #page(var),RPAGE
       INC var

    - Global addresses E.g.
       MOVB #page(var),GPAGE
       GLDAA var
       INCA
       GSTAA var

  Global addresses are used with G-Load's and G-Store's, logical addresses are used for all the other instructions
  and occasions. As HC12's or HCS12's do not have the G-Load and G-Store instructions,
  global addresses are not used with these processor families.
  They are only used with HCS12X chips (and maybe future ones deriving from a HCS12X).

  Logical and Global addresses can point to the same object, however the global and logical address of an object
  are different for most objects (actually for all except the registers from 0 to 0x7FF).
  Therefore the compiler needs to transform in between them.

  HCS12X Pointer types:

    The following are logical addresses:
    - all 16 bit pointers
       - "char* __near": always.
       - "char *" in the small and banked memory model
    - 24 bit dpage, epage, ppage or rpage pointers (*1) (note: the first HCS12X compilers may not support these pointer types)
       - "char *__dpage": Note this type only exists for
                          orthogonality with the HC12 A4 chip which has a DPAGE reg.
                          It does not apply to the HCS12X.
       - "char *__epage": 24 bit pointer using the EPAGE register
       - "char *__ppage": 24 bit pointer using the PPAGE register.
                          As the PPAGE is also used for BANKED code,
                          using this pointer type is only legal from non banked code.
       - "char *__rpage": 24 bit pointer using the RPAGE register


    The following are global addresses:
       "char*": in the large memory model (only HCS12X)
       "char* __far": always for HCS12X.

   (*1): For the HC12 and HCS12 "char* __far" and "char*" in the large memory model are also logical.

   Some notes for the HC12/HCS12 programmers.

   The address of a far object for a HC12 and for a HCS12X is different, even if they are at the same place in the memory map.
   For the HC12, a far address is using the logical addresses, for the HCS12X however, far addresses are using global addresses.
   This does cause troubles for the unaware!

  HCS12X Logical Memory map

    Logical Addresses           Used for                shadowed at           page register     Global Address

    0x000000 .. 0x0007FF        Peripheral Registers                          Not Paged         0x000000
    0x??0800 .. 0x??0BFF        Paged EEPROM                                  EPAGE (@0x17)     0x100000+EPAGE*0x0400
    0x000C00 .. 0x000FFF        Non Paged EEPROM        0xFF0800..0xFF0FFF    Not Paged         0x13FC00
    0x??1000 .. 0x??1FFF        Paged RAM                                     RPAGE (@0x16)     0x000000+RPAGE*0x1000
    0x002000 .. 0x003FFF        Non Paged RAM           0xFE1000..0xFF1FFF    Not Paged         0x0FE000
    0x004000 .. 0x007FFF        Non Paged FLASH         0xFC8000..0xFCBFFF    Not Paged         0x7F4000
    0x??8000 .. 0x00BFFF        Paged FLASH                                   PPAGE (@0x30)     0x400000+PPAGE*0x4000
    0x00C000 .. 0x00FFFF        Non Paged FLASH         0xFF8000..0xFFBFFF    Not Paged         0x7FC000

    NA: Not Applicable

  HCS12X Global Memory map

    Global Addresses            Used for                Logical mapped at

    0x000000 .. 0x0007FF        Peripheral Registers    0x000000 .. 0x0007FF
    0x000800 .. 0x000FFF        DMA registers           Not mapped
    0x001000 .. 0x0FFFFF        RAM                     0x??1000 .. 0x??1FFF
    0x0FE000 .. 0x0FFFFF        RAM, Log non paged      0x002000 .. 0x003FFF
    0x100000 .. 0x13FFFF        EEPROM                  0x??0800 .. 0x??0BFF
    0x13FC00 .. 0x13FFFF        EEPROM  non paged       0x000C00 .. 0x000FFF
    0x140000 .. 0x3FFFFF        External Space          Not mapped
    0x400000 .. 0x7FFFFF        FLASH                   0x??8000 .. 0x??BFFF
    0x7F4000 .. 0x7F7FFF        FLASH, Log non paged    0x004000 .. 0x007FFF
    0x7FC000 .. 0x7FFFFF        FLASH, Log non paged    0x00C000 .. 0x00FFFF


  How to read this table:
    For logical addresses, the lower 16 bits of the address do determine in which area the address is,
    if this address is paged, then this entry also controls and which of the EPAGE, PPAGE or RPAGE
    page register is controlling the bits 16 to 23 of the address.
    For global addresses, the bits 16 to 23 have to be in the GPAGE register and the lower 16 bits
    have to be used with the special G load or store instructions (e.g. GLDAA).
    As example the logical address 0x123456 is invalid. Because its lower bits 0x3456 are in a
    non paged area, so the page 0x12 does not exist.
    The address 0xFE1020 however does exist. Do access it, the RPAGE has to contain 0xFE and the
    offset 0x1020 has to be used.

      ORG $7000
        MOVB #0xFE, 0x16 ; RPAGE
        LDAA 0x1020      ; reads at the logical address 0xFE1020

    Because the last two RAM pages are also accessible directly from 0x2000 to 0x3FFF, the
    following shorter code does read the same memory location:

      ORG $7000
        LDAA 0x2020      ; reads at the logical address 0x2020
                         ;   which maps to the same memory as 0xFE1020

    This memory location now also has a global address. For logical 0xFE1020 the global address is 0x0FE020.
    So the following code does once more access the same memory location:

      ORG $7000
        MOVB #0x0F, 0x10 ; GPAGE
        LDAA 0xE020      ; reads at the global address 0x0FE020
                         ;   which maps to the same memory as the logical addr. 0xFE1020

    Therefore every memory location for the HCS12X has up to 3 different addresses.
    Up to two logical and one global.
    Notes.
      - Not every address has a logical equivalent. The external space is only available in the global address space.
        The DMA Registers are also only addressable with global addresses.

      - The PPAGE can only be set if the code is outside of the 0x8000 to 0xBFFF range.
        If not, the next code fetch will be from the new wrong PPAGE value.

      - Inside of the paged area, the highest pages are allocated first. So all HCS12X's do have the FF pages
        (if they have this memory type at all).

      - For RPAGE, the value 0 is illegal. Otherwise the global addresses would overlap with the registers.
        This has the implication that the logical address 0x001000 is strictly seen not valid.


*/


/*--------------------------- pointer conversion operations -------------------------------*/

/*--------------------------- _CONV_GLOBAL_TO_LOGICAL --------------------------------
  Convert 24 bit logical to 24 bit global pointer
    ("char*__far" to "char*__gpage")

  Arguments :
  - B : page part of global address
  - X : 16 offset part of global address

  Postcondition :
  - B == page of returned logical address
  - X == offset of returned logical address
  - Y remains unchanged
  - A remains unchanged
*/
/*--------------------------- Convert 24 bit global to 24 bit logical pointer ----------------------------------*/

/* B:X = Logical(B:X) */
#ifdef __cplusplus
extern "C"
#endif

#pragma NO_FRAME
#pragma NO_ENTRY
#pragma NO_EXIT

void NEAR _CONV_GLOBAL_TO_LOGICAL(void) {
  __asm {
        CMPB    #0x40             ;// flash (0x400000..0x7FFFFF) or not?
        BLO     Below400000
// from 0x400000 to 0x7FFFFF
        CMPB    #0x7F             ;// check for Unpaged areas 0x7FC000..0x7FFFFF and 0x7F4000..0x7F7FFF
        BNE     PAGED_FLASH_AREA
        BITX    #0x4000
        BEQ     PAGED_FLASH_AREA
// from 0x7F4000 to 0x7F7FFF or 0x7FC000 to 0x7FFFFF
                                  ;// Note: offset in X is already OK.
        CLRB                      ;// logical page == 0
        RTS
PAGED_FLASH_AREA:                 ;// paged flash. Map to 0x8000..0xBFFF
// from 0x400000 to 0x7F3FFF  or 0x7F8000 to 0x7FBFFF
        LSLX                      ; // shift 24 bit address 2 bits to the left to get correct page in B
        ROLB
        LSLX
        ROLB
        LSRX                      ; // shift back to get offset from 0x8000 to 0xBFFF
        SEC
        RORX
        RTS                       ;// done

Below400000:
// from 0x000000 to 0x3FFFFF
#if 0 /* How should we handle mapping to External Space. There is no logical equivalent. This is an error case! */
        CMPB    #0x14             ;// check if above 0x140000. If so, its in the external space
        BLO     Below140000
        ERROR   !!!!              ;// this mapping is not possible! What should we do?
        RTS
Below140000:
// from 0x000000 to 0x13FFFF
#endif
        CMPB    #0x10             ;// if >= 0x100000 it's EEPROM
        BLO     Below100000
// from 0x100000 to 0x13FFFF (or 0x3FFFFF)
        CMPB    #0x13             ;// check if its is in the non paged EEPROM area at 0x13FC00..0x13FFFF

?? 快捷鍵說(shuō)明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲一区二区三区四区中文字幕| 国产精品久久二区二区| 丁香另类激情小说| 日本不卡视频在线| 亚洲视频在线一区二区| 精品国产免费视频| 91精品国产高清一区二区三区| 国产v综合v亚洲欧| 日韩精品每日更新| 亚洲乱码国产乱码精品精小说 | 宅男噜噜噜66一区二区66| 国产不卡视频在线播放| 美腿丝袜在线亚洲一区| 午夜欧美电影在线观看| 韩国精品在线观看| 免费看欧美女人艹b| 久久久久久久久97黄色工厂| 欧美精品丝袜中出| 国产高清亚洲一区| 久久不见久久见免费视频7| 亚洲国产精品一区二区www在线| 在线播放一区二区三区| a级精品国产片在线观看| 久久精品噜噜噜成人88aⅴ| 午夜精彩视频在线观看不卡| 一区二区三区电影在线播| 亚洲丝袜自拍清纯另类| 一区二区三区四区蜜桃| 亚洲人吸女人奶水| 国产精品不卡一区| 国产午夜精品一区二区| 国产欧美精品国产国产专区| 欧美成人精品1314www| 精品99久久久久久| 国产精品视频免费看| 亚洲精品国产精品乱码不99| 亚洲国产一区二区三区青草影视| 五月激情六月综合| 国产精品1区2区3区| 色哟哟一区二区在线观看| 欧美高清视频一二三区 | 久久精品国产亚洲a| 国产999精品久久久久久绿帽| 97精品视频在线观看自产线路二| 色婷婷狠狠综合| 精品国产乱码久久久久久蜜臀| 国产日韩精品一区二区三区在线| 亚洲欧美色综合| 精品一区免费av| 欧美日韩和欧美的一区二区| 国产欧美日韩不卡免费| 午夜av电影一区| 在线观看一区二区精品视频| 久久免费精品国产久精品久久久久 | 欧美一级黄色录像| 亚洲久草在线视频| 大尺度一区二区| 日韩一区二区三免费高清| 亚洲欧美日韩一区二区三区在线观看| 日本aⅴ亚洲精品中文乱码| 91污在线观看| 国产精品国产三级国产普通话99| 乱中年女人伦av一区二区| 欧美专区日韩专区| 国产精品国产三级国产有无不卡| 精油按摩中文字幕久久| 欧美一区国产二区| 丝袜a∨在线一区二区三区不卡| 99国内精品久久| 精品福利在线导航| 国产中文字幕一区| 久久色视频免费观看| 麻豆精品一区二区av白丝在线| 欧美精品日韩精品| 丝袜脚交一区二区| 欧美一级在线免费| 美女被吸乳得到大胸91| 91麻豆精品国产91久久久久久久久| 亚洲精品乱码久久久久| 欧美亚州韩日在线看免费版国语版| 亚洲人成影院在线观看| 欧美日韩在线播| 免费观看一级欧美片| 日韩欧美电影一区| 国产精品1区二区.| 亚洲人成在线观看一区二区| 91国在线观看| 免费在线观看成人| 国产三区在线成人av| a级高清视频欧美日韩| 午夜亚洲国产au精品一区二区 | 欧美高清一级片在线| 国产在线一区二区综合免费视频| 国产精品久久夜| 欧美福利一区二区| 99国产欧美另类久久久精品| 日韩精品亚洲专区| 亚洲欧美中日韩| 日韩欧美亚洲一区二区| 99久久免费视频.com| 男女性色大片免费观看一区二区 | 一二三区精品视频| 国产色产综合产在线视频| 在线成人av网站| 国产福利不卡视频| 久久99国产精品尤物| 亚洲高清一区二区三区| 日本一区二区成人在线| 精品理论电影在线观看| 欧美伦理电影网| 成人av在线播放网址| 国产乱国产乱300精品| 天堂蜜桃91精品| 亚洲一区二区三区视频在线播放| 欧美激情一区二区三区不卡| 欧美大片在线观看一区| 538在线一区二区精品国产| 色美美综合视频| 91首页免费视频| 波多野结衣中文字幕一区二区三区 | 91精品久久久久久久99蜜桃| 在线视频国内自拍亚洲视频| av资源站一区| 色哟哟精品一区| 欧美在线观看一区| 91久久精品一区二区三| 欧美影院精品一区| 欧美性受极品xxxx喷水| 欧美视频第二页| 欧美一个色资源| 久久久一区二区三区捆绑**| 国产欧美日韩在线视频| 国产精品天天摸av网| 亚洲欧洲一区二区在线播放| 麻豆视频观看网址久久| 国内精品伊人久久久久av影院| 男男视频亚洲欧美| 亚洲人成网站在线| 国产精品国产三级国产普通话三级 | 久久久精品一品道一区| 精品久久久久久久一区二区蜜臀| 日韩欧美精品在线视频| 久久蜜桃av一区二区天堂| 中文字幕欧美三区| 亚洲黄色性网站| 免费成人性网站| 99久久精品情趣| 日韩精品一区二区在线观看| 亚洲天堂免费看| 国产精品的网站| 午夜久久久久久久久久一区二区| 亚洲线精品一区二区三区八戒| 亚洲国产一区在线观看| 国产在线精品免费av| 99国产精品久久久久久久久久久| 欧美日韩电影在线播放| 久久综合九色综合欧美98| 亚洲精品ww久久久久久p站| 久久机这里只有精品| 欧美日韩精品一区二区三区四区 | 欧美日韩亚洲国产综合| 欧美国产一区二区| 九色porny丨国产精品| 欧美日韩精品一区二区三区| 亚洲少妇中出一区| www.在线欧美| 国产精品少妇自拍| 国产一区二区在线免费观看| 欧美老年两性高潮| 亚洲一区免费观看| 99精品视频在线免费观看| 国产亚洲精品7777| 久久电影网电视剧免费观看| 欧美精品日韩一区| 亚洲国产精品久久久男人的天堂| 日本在线不卡一区| 色综合久久99| 一区二区三区中文在线| 91丝袜高跟美女视频| 自拍偷拍欧美激情| 99精品国产一区二区三区不卡| 久久影院视频免费| av中文字幕不卡| 国产精品素人一区二区| 成人福利视频网站| 国产精品二三区| 成人午夜av电影| 亚洲欧洲精品一区二区三区| 欧美中文一区二区三区| 一区二区三区中文字幕在线观看| 一本色道久久加勒比精品| 亚洲成人手机在线| 日韩欧美高清一区| 顶级嫩模精品视频在线看| 中文字幕永久在线不卡| 91丨九色丨尤物| 美女国产一区二区三区| 国产午夜精品一区二区三区嫩草| jlzzjlzz国产精品久久| 亚洲地区一二三色|