?? fft.java
字號:
//Below is the syntax highlighted version of FFT.java from §9.7 Data Analysis.
/*************************************************************************
* Compilation: javac FFT.java
* Execution: java FFT N
* Dependencies: Complex.java
*
* Compute the FFT and inverse FFT of a length N complex sequence.
* Bare bones implementation that runs in O(N log N) time.
*
* Limitations
* -----------
* * assumes N is a power of 2
* * not the most memory efficient algorithm
*
*************************************************************************/
package com.biolab.node.nexTest.Jama;
import com.biolab.node.nexTest.Jama.*;
public class FFT {
// compute the FFT of x[], assuming its length is a power of 2
public static Complex[] fft(Complex[] x) {
int N = x.length;
Complex[] y = new Complex[N];
// base case
if (N == 1) {
y[0] = x[0];
return y;
}
// radix 2 Cooley-Tukey FFT
if (N % 2 != 0) throw new RuntimeException("N is not a power of 2");
Complex[] even = new Complex[N/2];
Complex[] odd = new Complex[N/2];
for (int k = 0; k < N/2; k++) even[k] = x[2*k];
for (int k = 0; k < N/2; k++) odd[k] = x[2*k + 1];
Complex[] q = fft(even);
Complex[] r = fft(odd);
for (int k = 0; k < N/2; k++) {
double kth = -2 * k * Math.PI / N;
Complex wk = new Complex(Math.cos(kth), Math.sin(kth));
y[k] = q[k].plus(wk.times(r[k]));
y[k + N/2] = q[k].minus(wk.times(r[k]));
}
return y;
}
// compute the inverse FFT of x[], assuming its length is a power of 2
public static Complex[] ifft(Complex[] x) {
int N = x.length;
Complex[] y = new Complex[N];
// take conjugate
for (int i = 0; i < N; i++)
y[i] = x[i].conjugate();
// compute forward FFT
y = fft(y);
// take conjugate again
for (int i = 0; i < N; i++)
y[i] = y[i].conjugate();
// divide by N
for (int i = 0; i < N; i++)
// y[i] = y[i].times(1.0 / N);
// modified by zhangweian ,2006/03/02, may be some problem
y[i] = y[i].times(new Complex(1.0/N, 0));
return y;
}
// compute the circular convolution of x and y
public static Complex[] cconvolve(Complex[] x, Complex[] y) {
// should probably pad x and y with 0s so that they have same length
// and are powers of 2
if (x.length != y.length) throw new RuntimeException("Dimensions don't agree");
int N = x.length;
// compute FFT of each sequence
Complex[] a = fft(x);
Complex[] b = fft(y);
// point-wise multiply
Complex[] c = new Complex[N];
for (int i = 0; i < N; i++)
c[i] = a[i].times(b[i]);
// compute inverse FFT
return ifft(c);
}
// compute the linear convolution of x and y
public static Complex[] convolve(Complex[] x, Complex[] y) {
Complex ZERO = new Complex(0, 0);
Complex[] a = new Complex[2*x.length];
for (int i = 0; i < x.length; i++) a[i] = x[i];
for (int i = x.length; i < 2*x.length; i++) a[i] = ZERO;
Complex[] b = new Complex[2*y.length];
for (int i = 0; i < y.length; i++) b[i] = y[i];
for (int i = y.length; i < 2*y.length; i++) b[i] = ZERO;
return cconvolve(a, b);
}
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -