亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? the k-means procedure.htm

?? JAVA 本程序所實現的功能為對數據進行無監(jiān)督的學習
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0055)http://www.cse.unsw.edu.au/~akgu380/Kmeans/K-means.html -->
<HTML><HEAD><TITLE>The k-Means Procedure</TITLE>
<META content="text/html; charset=iso-8859-1" http-equiv=Content-Type>
<META content="MSHTML 5.00.3806.1700" name=GENERATOR>
<META content="C:\Program Files\Microsoft Office\Office\html.dot" name=Template>
<META content="Mozilla/4.76 [en] (Windows NT 5.0; U) [Netscape]" 
name=GENERATOR></HEAD>
<BODY link=#0000ff vLink=#800080><B><FONT face=Arial><FONT size=+4>K-means 
algorithm</FONT></FONT></B> <BR><A 
href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/K-means.html">Description</A> | 
<A href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/KmeansDemo.html">Demo</A> | 
<A href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/KmeansCode.html">Code</A> | 
<P>This is a simple non-hierarchical clustering algorithm which requires the 
number of clusters as an input. It works by initially creating a random centroid 
for each of the clusters. Then the data is classified depending upon the minimum 
distance to the centroids. The centroid's position is recalculated everytime a 
component is added to the cluster and this continues until all the components 
are grouped into the final required number of clusters and the centroids do not 
change in successive calculations. 
<P><B><I><FONT face=Arial>The k-Means Procedure</FONT></I></B> 
<P>Suppose that we have n example feature vectors x<SUB>1</SUB>, x<SUB>2</SUB>, 
..., x<SUB>n</SUB> all from the same class, and we know that they fall into k 
compact clusters, k &lt; n. Let m<SUB>i</SUB> be the mean of the vectors in 
Cluster i. If the clusters are well separated, we can use a minimum-distance 
classifier to separate them. That is, we can say that x is in Cluster i if || x 
- mi || is the minimum of all the k distances. This suggests the following 
procedure for finding the k means: 
<P>Make initial guesses for the means m<SUB>1</SUB>, m<SUB>2</SUB>, ..., 
m<SUB>k</SUB> 
<P>Until there are no changes in any mean 
<DIR>
<DIR>Use the estimated means to classify the examples into clusters using a 
distance measure 
<P>For i from 1 to k 
<DIR>
<DIR>Replace m<SUB>i</SUB> with the mean of all of the examples for Cluster 
i</DIR></DIR>end_for</DIR></DIR>end_until 
<P>This is a simple version of the k-means procedure. It can be viewed as a 
greedy algorithm for partitioning the n examples into k clusters so as to 
minimize the sum of the squared distances to the cluster centers. It does have 
some weaknesses. 
<UL>
  <LI>The way to initialize the means was not specified. One popular way to 
  start is to randomly choose k of the examples. 
  <LI>The results produced depend on the initial values for the means, and it 
  frequently happens that sub-optimal partitions are found. The standard 
  solution is to try a number of different starting points. 
  <LI>It can happen that the set of examples closest to m<SUB>i</SUB> is empty, 
  so that m<SUB>i</SUB> cannot be updated. This is an annoyance that must be 
  handled in an implementation, but that we shall ignore. 
  <LI>The results depend on the metric used to measure || x - mi ||. A popular 
  solution is to normalize each variable by its standard deviation, though this 
  is not always desirable. 
  <LI>The results depend on the value of k. </LI></UL><B><I><FONT 
face=Arial>Implementation issues</FONT></I></B> 
<P>An implementation of this algorithm needs to pay attention to the following 
issues. 
<P><B>Initialization of k-means</B>: Since the basic k-means algorithm does not 
guarantee finding a global optimum and only finds a local minima, the solution 
obtained often depends very much on how it is initialized. There are a number of 
different heuristics used to initialize the algorithm. Two popular methods are - 

<UL>
  <LI>assign i<SUP>th</SUP> sample to the i modulo k<SUP>th</SUP> class. 
  <LI>randomly assign data to k different classes. </LI></UL><B>Distance 
measure</B>: The algorithm spends most of its time computing the distance. So, 
the measure chosen will have significant impact on the total time taken to 
compute. 
<P><B>Number of iterations</B>: Theoretically, k-means should terminate when no 
more samples are changing classes. There are proofs of termination for k-means, 
which rely on the fact that both steps of k-means (assign sample to nearest 
centers, move centers to cluster centroids) reduce variance. Typically, two 
criteria are used - 
<UL>
  <LI>terminate after a predefined fixed number of iterations, or 
  <LI>terminate after fewer than n sample change classes. </LI></UL><B>Dead 
clusters</B>: Seldom a centroid may not have any members in the next iteration. 
Such a cluster needs to be taken care of with some heuristics. 
<P><B>Number of k-means</B>: Usually, the number of clusters required is an 
input variable. However, certain heuristic cost function based on inter and 
intra cluster variance may be used to choose k in a model selection scenario. 
<P>
<HR width="100%">
<BR><A 
href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/K-means.html">Description</A> | 
<A href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/KmeansDemo.html">Demo</A> | 
<A href="http://www.cse.unsw.edu.au/~akgu380/Kmeans/KmeansCode.html">Code</A> | 
<P>Comments to <A 
href="mailto:akgu380@cse.unsw.edu.au">akgu380@cse.unsw.edu.au</A> <BR>&nbsp; 
<BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; 
<BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; <BR>&nbsp; 
<BR>&nbsp; </P></BODY></HTML>

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲色图丝袜美腿| 欧美一级一区二区| 狠狠色丁香久久婷婷综合_中| 亚洲综合清纯丝袜自拍| 日韩毛片视频在线看| 国产精品超碰97尤物18| 国产精品美女久久久久久久久 | 日本乱人伦aⅴ精品| 风流少妇一区二区| 风流少妇一区二区| 99精品视频中文字幕| 91视频观看免费| 欧美伊人精品成人久久综合97 | 久久精品99久久久| 久久aⅴ国产欧美74aaa| 精品一二三四在线| 国产成人精品影视| 91首页免费视频| 欧美日韩一区二区欧美激情| 欧美日本一区二区三区四区| 欧美成人精品二区三区99精品| 欧美大胆一级视频| 中文字幕成人av| 亚洲在线一区二区三区| 久久精品国产色蜜蜜麻豆| 国产精品一区二区三区四区| 91影院在线观看| 欧美精品丝袜久久久中文字幕| 日韩一区二区电影在线| 日本一区二区三区久久久久久久久不| 国产精品福利在线播放| 亚洲18色成人| 国产电影一区在线| 在线观看免费亚洲| 久久夜色精品国产欧美乱极品| 国产精品久久一卡二卡| 香蕉影视欧美成人| 国产·精品毛片| 欧美精品久久一区二区三区 | 国产一区二区精品久久| av电影在线不卡| 日韩视频在线一区二区| 国产精品国产馆在线真实露脸| 婷婷久久综合九色国产成人| 国产乱码字幕精品高清av| 欧美做爰猛烈大尺度电影无法无天| 日韩一区二区不卡| 亚洲免费av观看| 国产成a人亚洲精| 在线91免费看| 一区二区三区在线看| 国产精品888| 日韩欧美一区中文| 亚欧色一区w666天堂| 91最新地址在线播放| 精品欧美黑人一区二区三区| 亚洲va欧美va人人爽| 99国内精品久久| 国产欧美精品一区二区色综合| 日韩不卡手机在线v区| 欧洲一区在线电影| 亚洲视频 欧洲视频| 成人免费看黄yyy456| 久久综合色8888| 免费观看一级欧美片| 精品视频在线免费| 亚洲一区二区视频在线观看| 成人丝袜高跟foot| 中文成人av在线| 国产99久久久久| 国产欧美日韩一区二区三区在线观看| 美女被吸乳得到大胸91| 在线播放/欧美激情| 午夜久久电影网| 欧美日韩中文国产| 亚洲一区二区三区四区在线观看| 成人18视频日本| 国产精品久久久久久久久快鸭| 成人做爰69片免费看网站| 精品久久久久久综合日本欧美| 一区二区三区欧美日| 91麻豆国产在线观看| 亚洲男女一区二区三区| 一本大道av伊人久久综合| 亚洲色图一区二区| 色婷婷国产精品久久包臀| 亚洲精品国产a| 欧美在线免费观看亚洲| 亚洲va欧美va人人爽| 欧美久久一区二区| 日本亚洲最大的色成网站www| 欧美日韩视频一区二区| 丝袜美腿亚洲一区| 日韩精品综合一本久道在线视频| 久久狠狠亚洲综合| 国产精品嫩草影院av蜜臀| 99久久免费国产| 亚洲福利视频一区二区| 日韩一级大片在线观看| 国产精品88888| 亚洲天堂福利av| 欧美色精品在线视频| 蜜臀精品久久久久久蜜臀| 久久久久久黄色| 99re成人在线| 日韩av不卡在线观看| 久久久久久9999| 一本色道久久综合亚洲aⅴ蜜桃 | 欧美精品一区二区三区四区| 国产一区二区福利| 亚洲女爱视频在线| 91精品在线观看入口| 国产91精品免费| 亚洲国产精品尤物yw在线观看| 日韩精品最新网址| 色诱亚洲精品久久久久久| 免费观看成人av| 国产精品久久久久久久午夜片| 欧美日韩一区视频| 国产成人在线免费| 亚洲一级二级三级在线免费观看| 欧美成va人片在线观看| 91在线精品一区二区| 久久精品国产一区二区三 | 欧美日韩精品免费观看视频| 久久99精品久久久久久国产越南| 综合精品久久久| 精品日韩一区二区| 欧美影院精品一区| 成人av第一页| 国产揄拍国内精品对白| 亚洲制服丝袜av| 一区二区中文视频| 久久久亚洲精华液精华液精华液| 在线精品视频免费观看| 成人高清免费在线播放| 精品中文字幕一区二区| 亚洲第一主播视频| 夜夜亚洲天天久久| 国产精品久99| 国产女主播视频一区二区| 欧美一区二区视频免费观看| 99re免费视频精品全部| 成人听书哪个软件好| 玖玖九九国产精品| 天堂午夜影视日韩欧美一区二区| 综合网在线视频| 亚洲国产高清在线| 国产日韩欧美一区二区三区乱码 | 97久久精品人人澡人人爽| 黄色日韩三级电影| 久久精品国产第一区二区三区| 亚洲国产精品久久人人爱| 亚洲欧美另类久久久精品2019| 国产精品全国免费观看高清| 国产亚洲欧美日韩在线一区| 精品久久国产97色综合| 欧美成人性战久久| 日韩欧美一二区| 日韩一级完整毛片| 日韩免费观看高清完整版| 91精品国产一区二区三区| 91 com成人网| 欧美videossexotv100| 日韩欧美综合在线| 精品久久一区二区三区| 久久网站热最新地址| 欧美激情一区二区三区| 国产三级精品在线| 国产精品色哟哟| 综合久久久久久久| 亚洲午夜久久久久久久久久久 | 欧美视频在线一区二区三区| 欧美日韩另类一区| 日韩亚洲欧美成人一区| 久久新电视剧免费观看| 国产精品白丝在线| 亚洲激情自拍偷拍| 日韩成人dvd| 国产精品99久久久久久似苏梦涵| 懂色av一区二区三区免费看| 色婷婷综合在线| 日韩一区二区三区高清免费看看 | 99久久久无码国产精品| 欧美色图在线观看| 精品999久久久| 亚洲激情自拍偷拍| 精品一区二区三区视频| a在线欧美一区| 欧美一区二区三区在线电影| 国产亚洲欧洲一区高清在线观看| 一区二区三区中文在线观看| 蜜桃视频一区二区三区| 成人app在线| 日韩欧美国产麻豆| 樱桃视频在线观看一区| 久久国产精品色| 欧美私模裸体表演在线观看| 国产日韩欧美一区二区三区综合| 亚洲成av人片|