?? sprpp.m
字號:
function [v,b] = sprpp(tx,a)
%SPRPP Right Taylor coefficients from local B-coefficients.
%
% [V,B] = SPRPP(TX,A)
%
% uses knot insertion to derive from the B-spline coefficients
% A(.,:) relevant for the interval [TX(.,k-1) .. TX(.,k)] (with
% respect to the knot sequence TX(.,1:2k-2) ) the polynomial
% coefficients V(.,1:k) relevant for the interval [0 .. TX(.,k)] .
% Here, [ ,k] := size(A) .
% Also, it is assumed that TX(.,k-1) <= 0 < TX(.,k) .
%
% In the process, uses repeated insertion of 0 to derive, in
% B(.,1:k) , the B-spline coefficients relevant for the interval
% [0 .. TX(.,k)] (with respect to the knot sequence
% [0,...,0,TX(.,k:2*(k-1))]) .
%
% See also SPLPP.
% Carl de Boor 25 feb 89
% Copyright 1987-2003 C. de Boor and The MathWorks, Inc.
% $Revision: 1.14 $
k = length(a(1,:)); km1 = k-1; b = a;
for r=1:km1
for i=1:k-r
b(:,i) =(tx(:,i+km1).*b(:,i)-tx(:,i+r-1).*b(:,i+1))./...
(tx(:,i+km1)-tx(:,i+r-1));
end
end
% Use differentiation at 0 to generate the derivatives
v = b;
for r=2:k
factor = (k-r+1)/(r-1);
for i=k:-1:r
v(:,i) = (v(:,i) - v(:,i-1))*factor./tx(:,i+k-r);
end
end
v = v(:,k:-1:1);
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -