?? mexsvmtrain.m
字號(hào):
function [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = mexSVMTrain(Samples, Labels, Parameters, Weight, Verbose)
% Usages:
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = mexSVMTrain(Samples, Labels)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = mexSVMTrain(Samples, Labels, Parameters)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = mexSVMTrain(Samples, Labels, Parameters, Weight)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = mexSVMTrain(Samples, Labels, Parameters, Weight, Verbose)
%
% Construct a SVM, either classifier or regressioner, based on Dr. Chih-Jen's LIBSVM algorithm (version 2.33).
% It is able to deal with both 2-class and multi-class problem when used in classification.
% When it is used to deal with multiclass problem, 1-1, or pairwise, multi-class
% scheme is used to reduce the multiclass problem to L(L-1)/2 2-class problems, where L is number of
% classes involved.
%
% please refer to http://www.csie.ntu.edu.tw/~cjlin/libsvm for more information
%
% Inputs:
% Samples - training samples, MxN, (a row of column vectors);
% Labels - labels of training samples, 1xN, (a row vector);
% Parameters - the paramters required by the training algorithm (a <=11-element row vector);
% +------------------------------------------------------------------
% |Kernel Type| Degree | Gamma | Coefficient | C |Cache size|epsilon|
% +------------------------------------------------------------------
% ----------------------------------------------+
% | SVM type | nu | loss toleration | shrinking |
% ----------------------------------------------+
% where Kernel Type: (default: 2)
% 0 --- Linear
% 1 --- Polynomial: (Gamma*<X(:,i),X(:,j)>+Coefficient)^Degree
% 2 --- RBF: (exp(-Gamma*|X(:,i)-X(:,j)|^2))
% 3 --- Sigmoid: tanh(Gamma*<X(:,i),X(:,j)>+Coefficient)
% Degree: default 3
% Gamma: If the input value is zero, Gamma will be set defautly as
% 1/(max_pattern_dimension) in the function. If the input
% value is non-zero, Gamma will remain unchanged in the
% function. (default: 1)
% Coefficient: default 0
% C: Cost of constrain violation for C-SVC, epsilon-SVR, and nu-SVR (default 1)
% Cache Size: Space to hold the elements of K(<X(:,i),X(:,j)>) matrix (default 40MB)
% epsilon: tolerance of termination criterion (default: 0.001)
% SVM Type: (default: 0)
% 0 --- c-SVC
% 1 --- nu-SVC
% 2 --- one-class SVM
% 3 --- epsilon-SVR
% 4 --- nu-SVR
% nu: nu of nu-SVC, one-class SVM, and nu-SVR (default: 0.5)
% loss tolerance: epsilon in loss function of epsilon-SVR (default: 0.1)
% shrinking: whether to use the shrinking heuristics, 0 or 1 (default: 1)
% Weight - a row vector or scalar, C of class i is weight(i)*C in C-SVC (default: all 1's);
% Verbose - verbose level (default: 0).
% 0 --- very silent
% 1 --- a little verbose
%
% Outputs:
% AlphaY - Alpha * Y, where Alpha is the non-zero Lagrange Coefficients, and
% Y is the corresponding Labels, (L-1) x sum(nSV);
% All the AlphaYs are organized as follows: (pretty fuzzy !)
% classifier between class i and j: coefficients with
% i are in AlphaY(j-1, start_Pos_of_i:(start_Pos_of_i+1)-1),
% j are in AlphaY(i, start_Pos_of_j:(start_Pos_of_j+1)-1)
% SVs - Support Vectors. (Sample corresponding the non-zero Alpha), M x sum(nSV),
% All the SVs are stored in the format as follows:
% [SVs from Class 1, SVs from Class 2, ... SVs from Class L];
% Bias - Bias of all the 2-class classifier(s), 1 x L*(L-1)/2;
% Parameters - Output parameters used in training;
% nSV - numbers of SVs in each class, 1xL;
% nLabel - Labels of each class, 1xL.
%
% By Junshui Ma, and Yi Zhao (02/15/2002)
%
?? 快捷鍵說(shuō)明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號(hào)
Ctrl + =
減小字號(hào)
Ctrl + -