?? linearsvc.m
字號:
function [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = LinearSVC(Samples, Labels,C)
% USAGES:
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = LinearSVC(Samples, Labels)
% [AlphaY, SVs, Bias, Parameters, nSV, nLabel] = LinearSVC(Samples, Labels,C)
%
% DESCRIPTION:
% Construct a linear SVM classifier from the training Samples and Labels
%
% INPUTS:
% Samples: all the training patterns. (a row of column vectors)
% Lables: the corresponding class labels for the training patterns in Samples, (a row vector)
% C: Cost of the constrain violation (default 1)
%
% OUTPUTS:
% AlphaY - Alpha * Y, where Alpha is the non-zero Lagrange Coefficients, and
% Y is the corresponding Labels, (L-1) x sum(nSV);
% All the AlphaYs are organized as follows: (pretty fuzzy !)
% classifier between class i and j: coefficients with
% i are in AlphaY(j-1, start_Pos_of_i:(start_Pos_of_i+1)-1),
% j are in AlphaY(i, start_Pos_of_j:(start_Pos_of_j+1)-1)
% SVs - Support Vectors. (Sample corresponding the non-zero Alpha), M x sum(nSV),
% All the SVs are stored in the format as follows:
% [SVs from Class 1, SVs from Class 2, ... SVs from Class L];
% Bias - Bias of all the 2-class classifier(s), 1 x L*(L-1)/2;
% Parameters - Output parameters used in training;
% nSV - numbers of SVs in each class, 1xL;
% nLabel - Labels of each class, 1xL.
%
% By Junshui Ma, and Yi Zhao (02/15/2002)
%
if (nargin < 2) & (nargin > 3)
disp(' Incorrect number of input variables.\n');
help LinearSVC;
return;
else
if (nargin <=2)
Parameters = [0];
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = SVMTrain(Samples, Labels, Parameters);
else
Parameters = [0 1 1 1 C];
[AlphaY, SVs, Bias, Parameters, nSV, nLabel] = SVMTrain(Samples, Labels, Parameters);
end
end
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -