?? fastslam2_sim.m
字號:
function data= fastslam2_sim(lm, wp)
%function data= fastslam2_sim(lm, wp)
%
% INPUTS:
% lm - set of landmarks
% wp - set of waypoints
%
% OUTPUTS:
% data - set of particles representing final state
%
% NOTES:
% This program is a FastSLAM 2.0 simulator. To use, create a set of landmarks and
% vehicle waypoints (ie, waypoints for the desired vehicle path). The program
% 'frontend.m' may be used to create this simulated environment - type
% 'help frontend' for more information.
% The configuration of the simulator is managed by the script file
% 'configfile.m'. To alter the parameters of the vehicle, sensors, etc
% adjust this file. There are also several switches that control certain
% filter options.
%
% Tim Bailey and Juan Nieto 2004.
% Version 1.0
format compact
path(path, '../')
configfile;
if SWITCH_PREDICT_NOISE, warning('Sampling from predict noise usually OFF for FastSLAM 2.0'), end
if SWITCH_SAMPLE_PROPOSAL==0, warning('Sampling from optimal proposal is usually ON for FastSLAM 2.0'), end
h= setup_animations(lm,wp);
veh= [0 -WHEELBASE -WHEELBASE; 0 -1 1];
% initialisations
particles= initialise_particles(NPARTICLES);
xtrue= zeros(3,1);
dt= DT_CONTROLS; % change in time between predicts
dtsum= 0; % change in time since last observation
ftag= 1:size(lm,2); % identifier for each landmark
da_table= zeros(1,size(lm,2)); % data association table
iwp= 1; % index to first waypoint
G= 0; % initial steer angle
plines=[];
if SWITCH_SEED_RANDOM ~= 0, randn('state',SWITCH_SEED_RANDOM), end
Qe= Q; Re= R;
if SWITCH_INFLATE_NOISE==1, Qe= 2*Q; Re= 2*R; end
if SWITCH_PROFILE, profile on -detail builtin, end
% main loop
while iwp ~= 0
% compute true data
[G,iwp]= compute_steering(xtrue, wp, iwp, AT_WAYPOINT, G, RATEG, MAXG, dt);
if iwp==0 & NUMBER_LOOPS > 1, iwp=1; NUMBER_LOOPS= NUMBER_LOOPS-1; end
xtrue= predict_true(xtrue, V,G, WHEELBASE,dt);
% add process noise
[Vn,Gn]= add_control_noise(V,G,Q, SWITCH_CONTROL_NOISE);
% Predict step
for i=1:NPARTICLES
particles(i)= predict (particles(i), Vn,Gn,Qe, WHEELBASE,dt, SWITCH_PREDICT_NOISE);
particles(i)= observe_heading(particles(i), xtrue(3), SWITCH_HEADING_KNOWN); % if heading known, observe heading
end
% Observe step
dtsum= dtsum + dt;
if dtsum >= DT_OBSERVE
dtsum= 0;
% Compute true data, then add noise
[z,ftag_visible]= get_observations(xtrue, lm, ftag, MAX_RANGE);
z= add_observation_noise(z,R, SWITCH_SENSOR_NOISE);
if ~isempty(z), plines= make_laser_lines (z,xtrue); end
% Compute (known) data associations
Nf= size(particles(1).xf,2);
[zf,idf,zn,da_table]= data_associate_known(z, ftag_visible, da_table, Nf);
% Observe map features
if ~isempty(zf)
% compute weights w = w * p(z_k | x_k-1)
for i=1:NPARTICLES
w= compute_weight(particles(i), zf,idf, Re);
particles(i).w= particles(i).w * w;
end
% resampling *before* computing proposal permits better particle diversity
particles= resample_particles(particles, NEFFECTIVE, SWITCH_RESAMPLE);
% sample from "optimal" proposal distribution, then update map
for i=1:NPARTICLES
particles(i)= sample_proposal(particles(i), zf,idf, Re, SWITCH_SAMPLE_PROPOSAL);
particles(i)= feature_update(particles(i), zf, idf, Re);
end
end
% Observe new features, augment map
if ~isempty(zn)
for i=1:NPARTICLES
if isempty(zf) % sample from proposal distribution (if we have not already done so above)
particles(i).xv= multivariate_gauss(particles(i).xv, particles(i).Pv, 1);
particles(i).Pv= zeros(3);
end
particles(i)= add_feature(particles(i), zn,Re);
end
end
end
% plots
do_plot(h, particles, xtrue, plines, veh)
end
if SWITCH_PROFILE, profile report, end
data= particles;
%
%
function p= make_laser_lines (rb,xv)
if isempty(rb), p=[]; return, end
len= size(rb,2);
lnes(1,:)= zeros(1,len)+ xv(1);
lnes(2,:)= zeros(1,len)+ xv(2);
lnes(3:4,:)= transformtoglobal([rb(1,:).*cos(rb(2,:)); rb(1,:).*sin(rb(2,:))], xv);
p= line_plot_conversion (lnes);
function p= initialise_particles(np)
for i=1:np
p(i).w= 1/np;
p(i).xv= [0;0;0];
p(i).Pv= zeros(3);
p(i).xf= [];
p(i).Pf= [];
p(i).da= [];
end
function p= make_covariance_ellipses(particle)
N= 10;
inc= 2*pi/N;
phi= 0:inc:2*pi;
circ= 2*[cos(phi); sin(phi)];
p= make_ellipse(particle.xv(1:2), particle.Pv(1:2,1:2) + eye(2)*eps, circ);
lenf= size(particle.xf,2);
if lenf > 0
xf= particle.xf;
Pf= particle.Pf;
p= [p zeros(2, lenf*(N+2))];
ctr= N+3;
for i=1:lenf
ii= ctr:(ctr+N+1);
p(:,ii)= make_ellipse(xf(:,i), Pf(:,:,i), circ);
ctr= ctr+N+2;
end
end
function p= make_ellipse(x,P,circ)
% make a single 2-D ellipse
r= sqrtm_2by2(P);
a= r*circ;
p(2,:)= [a(2,:)+x(2) NaN];
p(1,:)= [a(1,:)+x(1) NaN];
%
%
function h= setup_animations(lm,wp)
figure
plot(lm(1,:),lm(2,:),'g*')
hold on, axis equal
plot(wp(1,:),wp(2,:), wp(1,:),wp(2,:),'ro')
h.xt= patch(0,0,'g','erasemode','xor'); % vehicle true
h.xm= patch(0,0,'r','erasemode','xor'); % mean vehicle estimate
h.obs= plot(0,0,'y','erasemode','xor'); % observations
h.xfp= plot(0,0,'r.','erasemode','background'); % estimated features (particle means)
h.xvp= plot(0,0,'r.','erasemode','xor'); % estimated vehicle (particles)
h.cov= plot(0,0,'erasemode','xor'); % covariances of max weight particle
function do_plot(h, particles, xtrue, plines, veh)
xvp = [particles.xv];
xfp = [particles.xf];
w = [particles.w];
ii= find(w== max(w));
xvmax= xvp(:,ii);
xt= transformtoglobal(veh,xtrue);
xm= transformtoglobal(veh,xvmax);
set(h.xt, 'xdata', xt(1,:), 'ydata', xt(2,:))
set(h.xm, 'xdata', xm(1,:), 'ydata', xm(2,:))
set(h.xvp, 'xdata', xvp(1,:), 'ydata', xvp(2,:))
if ~isempty(xfp), set(h.xfp, 'xdata', xfp(1,:), 'ydata', xfp(2,:)), end
if ~isempty(plines), set(h.obs, 'xdata', plines(1,:), 'ydata', plines(2,:)), end
pcov= make_covariance_ellipses(particles(ii(1)));
if ~isempty(pcov), set(h.cov, 'xdata', pcov(1,:), 'ydata', pcov(2,:)); end
drawnow
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -