?? predict.m
字號:
function particle= predict(particle, V,G,Q, WB,dt, addrandom)
%
% INPUTS:
% xv - vehicle pose sample
% Pv - vehicle pose predict covariance
%
% Note: Pv must be zeroed after each observation. It accumulates the
% vehicle pose uncertainty between measurements.
xv= particle.xv;
Pv= particle.Pv;
% Jacobians
phi= xv(3);
Gv= [1 0 -V*dt*sin(G+phi);
0 1 V*dt*cos(G+phi);
0 0 1];
Gu= [dt*cos(G+phi) -V*dt*sin(G+phi);
dt*sin(G+phi) V*dt*cos(G+phi);
dt*sin(G)/WB V*dt*cos(G)/WB];
% predict covariance
particle.Pv= Gv*Pv*Gv' + Gu*Q*Gu';
% optional: add random noise to predicted state
if addrandom == 1
VG= multivariate_gauss([V;G], Q, 1);
V= VG(1); G= VG(2);
end
% predict state
particle.xv= [xv(1) + V*dt*cos(G+xv(3,:));
xv(2) + V*dt*sin(G+xv(3,:));
pi_to_pi(xv(3) + V*dt*sin(G)/WB)];
%
%
function x= pi_to_pi(x)
if x > pi
x= x - 2*pi;
elseif x < -pi
x= x + 2*pi;
end
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -