亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? crossvalidate.m

?? 應用的比較方便
?? M
字號:
function [cost,costs,output] = crossvalidate(model, X,Y, L, estfct,combinefct, corrected,trainfct,simfct)% Estimate the model performance of a model with [$ l$] -fold crossvalidation%% >> cost = crossvalidate({Xtrain,Ytrain,type,gam,sig2}, Xval, Yval)% >> cost = crossvalidate( model, Xval, Yval)% % The data is once permutated randomly, then it is divided into L% (by default 10) disjunct sets. In the i-th (i=1,...,l) iteration,% the i-th set is used to estimate the performance ('validation% set') of the model trained on the other l-1 sets ('training% set'). At last, the l (denoted by L) different estimates of the% performance are combined (by default by the 'mean'). The% assumption is made that the input data are distributed% independent and identically over the input space. As additional% output, the costs in the different folds ('costs') and all% residuals ('ec') of the data are returned:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval)% % By default, this function will call the training (trainlssvm) and% simulation (simlssvm) algorithms for LS-SVMs. However, one can% use the validation function more generically by specifying the% appropriate training and simulation function. Some commonly used criteria are:% % >> cost = crossvalidate(model, Xval, Yval, 10, 'misclass', 'mean', 'corrected')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mse', 'mean', 'original')% >> cost = crossvalidate(model, Xval, Yval, 10, 'mae', 'median', 'corrected')% % Full syntax% %     1. Using LS-SVMlab with the functional interface:% % >> [cost, costs, ec] = crossvalidate({X,Y,type,gam,sig2,kernel,preprocess},Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         X             : Training input data used for defining the LS-SVM and the preprocessing%         Y             : Training output data used for defining the LS-SVM and the preprocessing%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         Xval          : N x d matrix with the inputs of the data used for cross-validation%         Yval          : N x m matrix with the outputs of the data used for cross-validation%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     2. Using the object oriented interface:% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : L x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the LS-SVM model%         Xval          : Nt x d matrix with the inputs of the validation points used in the procedure%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'% %%     3. Using other modeling techniques::% % >> [cost, costs, ec] = crossvalidate(model, Xval, Yval, L, estfct, combinefct, correction, trainfct, simfct)% %       Outputs    %         cost          : Cost estimation of the L-fold cross validation%         costs(*)      : l x 1 vector with costs estimated on the L different folds%         ec(*)         : N x 1 vector with residuals of all data%       Inputs    %         model         : Object oriented representation of the model%         Xval          : Nt x d matrix with the inputs of the validation points used%         Yval          : Nt x m matrix with the outputs of the validation points used in the procedure%         L(*)          : Number of folds (by default 10)%         estfct(*)     : Function estimating the cost based on the residuals (by default mse)%         combinefct(*) : Function combining the estimated costs on the different folds (by default mean)%         correction(*) : 'original'(*) or 'corrected'%         trainfct      : Function used to train the model%         simfct        : Function used to simulate test data with the model% % See also:% validate, leaveoneout, leaveoneout_lssvm, trainlssvm, simlssvm% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlab%% initialisation and defaults%if size(X,1)~=size(Y,1), error('X and Y have different number of datapoints'); end[nb_data,y_dim] = size(Y);% LS-SVMlabeval('model = initlssvm(model{:});',' ');eval('L;','L=min(ceil(model.nb_data/4),10);');eval('estfct;','estfct=''mse'';');eval('combinefct;','combinefct=''mean'';');eval('trainfct;','trainfct=''trainlssvm'';');eval('simfct;','simfct=''simlssvm'';');eval('corrected;','corrected=''original'';');%% make a random permutation of the data%px = zeros(size(X));py = zeros(size(Y));if L==nb_data, p = 1:nb_data; else p = randperm(nb_data); endfor i=1:nb_data,  px(i,:) = X(p(i),:);  py(i,:) = Y(p(i),:);end;block_size = floor(nb_data/L);%%initialize: no incremental  memory allocation%err = zeros(L,1);corr2 = zeros(L,1);costs = zeros(L,1);output = zeros(size(Y));%%% start loop over l validations%for l = 1:L,    % divide in data and validation set, trainings data set is a copy  % of permutated_data, validation set is just a logical index   if l==L,    train = [1:block_size*(l-1)];    validation = block_size*(l-1)+1:nb_data;  else    train = [1:block_size*(l-1) block_size*l+1:nb_data];    validation = block_size*(l-1)+1:block_size*l;  end    % lets invert this...eXtreme cv  %validation = [1:block_size*(l-1) block_size*l+1:nb_data];  %train = block_size*(l-1)+1:block_size*l;  %disp([num2str(l) ': |trainset|' num2str(length(train)) ' & |test| ' num2str(length(validation))]);      %costs(l) = validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);  [costs(l), modell,output(p(validation),:)] = ...      validate(model, px(train,:), py(train,:), px(validation,:), py(validation,:),estfct, trainfct, simfct);    %  % calculate correction term 2: MSE(f_data, error_wholedata)  % try to reuse the previously calculated model  %  if corrected(1) =='c',    eval('errors = feval(simfct, modell, px) - py;corr2(l) = feval(estfct, errors);',...	 'corr2(l) = validate(model, px(train,:), py(train,:), px, py,estfct, trainfct, simfct);');  endend % end loop over l validations%%% misclassifications%sc = find(costs~=inf & costs~=NaN);ff=zeros(size(costs)); ff(sc)=costs(sc);costs=ff;sc = find(corr2~=inf & corr2~=NaN);ff=zeros(size(corr2)); ff(sc)=corr2(sc);corr2=ff;%% calculate the final costs%if corrected(1)=='c',  % calculate correction term 1: MSE(f_wholedata, error_wholedata)  corr1 = validate(model,X, Y,  X, Y,  estfct, trainfct, simfct);  if corr1==inf | corr2==NaN, corr1=0; end  cost = feval(combinefct, costs)+corr1-feval(combinefct,corr2);else  cost = feval(combinefct, costs);end;	  fprintf('\n');	%file = [num2str(cost) '_costsLSSVM_{' num2str(model.gam(1)) ',' num2str(model.kernel_pars(1)) '}.mat'];%save L1costs costs;

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩伦理免费电影| 亚洲一区电影777| 欧美第一区第二区| 337p亚洲精品色噜噜狠狠| 欧美精品123区| 日韩女优av电影| 精品91自产拍在线观看一区| 日韩欧美在线网站| 精品福利一区二区三区| 久久影院视频免费| 欧美经典三级视频一区二区三区| 久久一区二区视频| 国产精品青草综合久久久久99| 日本一区二区综合亚洲| 中文字幕在线观看一区| 亚洲精品ww久久久久久p站| 亚洲午夜三级在线| 久久精品国产秦先生| 国产在线精品免费| 99在线精品观看| 欧美三级电影在线看| 欧美一卡2卡三卡4卡5免费| 久久久久国产精品麻豆| 中文字幕一区av| 亚洲一区二区欧美| 久久精品国产免费看久久精品| 国产成人精品亚洲日本在线桃色| 国产·精品毛片| 精品污污网站免费看| 久久先锋影音av鲁色资源| 亚洲欧美日韩国产另类专区| 同产精品九九九| 国产电影精品久久禁18| 91在线观看免费视频| 欧美一级片免费看| 中文字幕一区三区| 另类人妖一区二区av| 99在线视频精品| 日韩欧美成人午夜| 亚洲国产美女搞黄色| 国内精品国产成人| 欧美日韩视频一区二区| 欧美激情综合五月色丁香| 午夜私人影院久久久久| 成人美女视频在线观看| 日韩美一区二区三区| 亚洲免费观看视频| 国产精品一区三区| 欧美一二三区在线观看| 一二三区精品视频| 国产剧情一区二区三区| 91麻豆精品国产自产在线观看一区| 国产欧美精品一区| 久久国产麻豆精品| 欧美日韩视频在线观看一区二区三区 | 日本女人一区二区三区| 成人网在线播放| 日韩小视频在线观看专区| 亚洲黄色尤物视频| 99re这里只有精品首页| www成人在线观看| 老汉av免费一区二区三区| 欧美色爱综合网| 亚洲国产精品一区二区尤物区| av电影在线观看不卡| 国产欧美一区二区三区在线看蜜臀| 欧美a一区二区| 777色狠狠一区二区三区| 亚洲午夜久久久久| 欧美亚洲综合网| 亚洲激情网站免费观看| 色狠狠桃花综合| 一区二区欧美在线观看| 在线免费一区三区| 亚洲激情一二三区| 欧美色图第一页| 日韩不卡一二三区| 91精品国产入口| 麻豆精品在线看| 精品国产一二三区| 国产剧情一区二区| 国产精品乱码一区二区三区软件| 粉嫩在线一区二区三区视频| 国产日韩欧美麻豆| 99综合影院在线| 一区二区三区蜜桃网| 欧美三级中文字幕| 奇米888四色在线精品| 久久综合九色欧美综合狠狠 | 色综合久久综合网97色综合| 亚洲人精品午夜| 欧美午夜一区二区| 久久丁香综合五月国产三级网站| 久久午夜电影网| 成人免费va视频| 午夜不卡av免费| 精品粉嫩aⅴ一区二区三区四区| 国产美女精品在线| 亚洲免费观看高清完整版在线观看熊 | aa级大片欧美| 五月天网站亚洲| 精品粉嫩aⅴ一区二区三区四区 | 91亚洲精品久久久蜜桃| 亚洲一二三四久久| 精品福利二区三区| 色婷婷国产精品久久包臀 | 国产精品二三区| 欧美日韩中文字幕精品| 开心九九激情九九欧美日韩精美视频电影| 26uuu精品一区二区三区四区在线| 国产成人免费视频网站高清观看视频 | 午夜精品久久久久久久久久| 欧美r级在线观看| 99久久精品费精品国产一区二区| 亚洲国产精品综合小说图片区| 久久这里都是精品| 欧美色老头old∨ideo| 成人午夜伦理影院| 美女国产一区二区| 亚洲精品高清在线观看| 欧美videossexotv100| 在线一区二区观看| 懂色av一区二区三区免费观看| 亚洲高清免费在线| 成人免费在线视频| 久久综合狠狠综合| 这里是久久伊人| 在线观看欧美精品| 成人午夜视频网站| 激情久久久久久久久久久久久久久久| 亚洲免费观看视频| 国产精品不卡视频| 久久美女高清视频| 精品伦理精品一区| 日韩亚洲欧美在线观看| 欧美色爱综合网| 在线观看亚洲专区| 一本一道综合狠狠老| 国产.精品.日韩.另类.中文.在线.播放| 日本中文字幕一区二区有限公司| 亚洲免费观看视频| 中文字幕一区二区三区乱码在线| 精品福利二区三区| 欧美精品一区二区三区蜜桃视频| 欧美日韩精品高清| 色婷婷精品久久二区二区蜜臂av| 国产精品羞羞答答xxdd| 韩国精品一区二区| 国内成人免费视频| 国模套图日韩精品一区二区| 日韩精品免费视频人成| 日本成人中文字幕| 美女一区二区视频| 另类小说欧美激情| 韩国精品主播一区二区在线观看| 久久国产精品区| 国精品**一区二区三区在线蜜桃| 韩国三级中文字幕hd久久精品| 蜜臀av性久久久久av蜜臀妖精| 日韩电影一区二区三区| 免费人成精品欧美精品| 美女视频黄久久| 久久国产精品99久久久久久老狼| 激情图片小说一区| 懂色av一区二区夜夜嗨| 91在线免费视频观看| 在线亚洲精品福利网址导航| 欧美日韩一区二区在线视频| 欧美精品xxxxbbbb| 精品久久久久久亚洲综合网 | 欧美影院午夜播放| 在线播放欧美女士性生活| 欧美一级理论片| 欧美精品一区二区三区久久久| 中文文精品字幕一区二区| 国产精品福利一区| 亚洲电影在线播放| 日本少妇一区二区| 成人一区二区在线观看| 在线免费不卡视频| 日韩欧美在线123| 国产精品免费观看视频| 国产精品不卡一区二区三区| 亚洲va国产天堂va久久en| 国产精品一区二区不卡| 色香蕉成人二区免费| 欧美一区二区三区日韩视频| 国产日产欧产精品推荐色| 亚洲妇熟xx妇色黄| 国产高清亚洲一区| 欧美在线观看一区二区| 精品国产乱码久久久久久浪潮 | 综合精品久久久| 三级成人在线视频| 成人亚洲一区二区一| 欧美日本一区二区| 亚洲天堂中文字幕| 久久国产精品99久久久久久老狼| 92国产精品观看| 久久综合色天天久久综合图片|