亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? plotlssvm.m

?? 應用的比較方便
?? M
字號:
function model = plotlssvm(model,ab,grain, princdim)% Plot the LS-SVM results in the environment of the training data% % >> plotlssvm({X,Y,type,gam, sig2, kernel})% >> plotlssvm({X,Y,type,gam, sig2, kernel}, {alpha,b})% >> model = plotlssvm(model)% % The first argument specifies the LS-SVM. The latter specifies the% results of the training if already known. Otherwise, the training% algorithm is first called. One can specify the precision of the% plot by specifying the grain of the grid. By default this value% is 50. The dimensions (seldims) of the input data to display can% be selected as an optional argument in case of higher dimensional% inputs (> 2). A grid will be taken over this dimension, while the% other inputs remain constant (0).%  %% Full syntax% %     1. Using the functional interface:% % >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, {alpha,b}, grain, seldims)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess})% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain)% >> plotlssvm({X,Y,type,gam,sig2,kernel,preprocess}, [],      , grain, seldims)% %       Inputs    %         X             : N x d matrix with the inputs of the training data%         Y             : N x 1 vector with the outputs of the training data%         type          : 'function estimation' ('f') or 'classifier' ('c')%         gam           : Regularization parameter%         sig2          : Kernel parameter (bandwidth in the case of the 'RBF_kernel')%         kernel(*)     : Kernel type (by default 'RBF_kernel')%         preprocess(*) : 'preprocess'(*) or 'original'%         alpha(*)      : support values obtained from training%         b(*)          : Bias term obtained from training%         grain(*)      : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*)    : The principal inputs one wants to span a grid (by default [1 2])% %%     2. Using the object oriented interface:% % >> model = plotlssvm(model)% >> model = plotlssvm(model, [], grain)% >> model = plotlssvm(model, [], grain, seldims)% %       Outputs    %         model(*)   : Trained object oriented representation of the LS-SVM model%       Inputs    %         model      : Object oriented representation of the LS-SVM model%         grain(*)   : The grain of the grid evaluated to compose the surface (by default 50)%         seldims(*) : The principal inputs one wants to span a grid (by default [1 2])% % See also:%   trainlssvm, simlssvm.% Copyright (c) 2002,  KULeuven-ESAT-SCD, License & help @ http://www.esat.kuleuven.ac.be/sista/lssvmlabfprintf('Start Plotting...')%% initiating the model...%if iscell(model),     model = initlssvm(model{:});    eval('model.alpha = ab{1}; model.b = ab{2};model.status = ''trained'';','model=trainlssvm(model);');end%figure;clfmodel = trainlssvm(model);% reconstruct the original support vectors ...[osvX,osvY] = postlssvm(model,model.xtrain(:,1:model.x_dim),model.ytrain(:,1:model.y_dim));%% define the principal dimensions one plots%if (model.x_dim>2)   % plotted principal dimensions  eval('princdim; restdim = setdiff(1:model.x_dim,princdim);','princdim=[1 2 3];');elseif (model.x_dim==2),  princdim = [1 2]; restdim = []; else  princdim = [1]; restdim = []; endif max(princdim)>model.x_dim,   error('Given dimensions exceed input dimensions...');end% classification (x_dim=2, y_dim=1:...) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%if model.type(1)=='c', % 'classification'   %  % precision of plot  %  eval('grain;','grain = 50;');    if model.x_dim>=2,   %%%%%%%%%%%%%%%%%%       % Determine plot limits     xmin1=min(osvX(:,princdim(1))); if xmin1<0, xmin1=1.05*xmin1; else xmin1 = 0.98*xmin1; end    xmax1=max(osvX(:,princdim(1))); if xmax1>0, xmax1=1.05*xmax1; else xmax1 = 0.98*xmax1; end    xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.98*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.98*xmax2; end    xrange1 = xmin1:(xmax1-xmin1)/grain:xmax1;    xrange2 = xmin2:(xmax2-xmin2)/grain:xmax2;    [XX,YY] = meshgrid(xrange1,xrange2);    Xt = [reshape(XX,prod(size(XX)),1) reshape(YY,prod(size(YY)),1)];    xsteps = length(xrange1);    ysteps = length(xrange2);                %    % simulate the points    %    restdim = setdiff(1:model.x_dim, princdim);    rest = zeros(size(Xt,1),model.x_dim-2);    Xt = [Xt rest];    [ZZ,ff,model] = simlssvm(model,Xt(:,[princdim restdim]));    if min(ZZ)==max(ZZ), warning('Simulation over the input space results in only one class...'); end        %    % for plotting, the categorical format is required    %    if ~strcmpi(model.codetype,'none'),      if size(model.codebook1,1)~=1,	eval('[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2,model.code_distfct);',...	     '[ZZ,codebook_cat] = code(ZZ,''code_cat'',model.codebook2);');      else	codebook_cat = model.codebook1;      end      eval('osvY = code(osvY, codebook_cat,{}, model.codebook2, model.codedist_fct, model.codedist_args);',...	   'osvY = code(osvY, codebook_cat,{}, model.codebook2);');          if max(max(ZZ))==-inf, 	error('bad coding scheme, no classes found after training');      end    else            if model.y_dim>1,	warning(['only first dimension is plotted, for multiclass' ...		 ' classification use categorical representation, ev.'...		 ' combined with a coding technique.']);      end      osvY = osvY(:,1);      ZZ = ZZ(:,1);      sosvY = sort(osvY);      codebook_cat = sosvY([1;find(sosvY(2:end)~=sosvY(1:end-1))+1])';    end        % contour plot    colormap cool;    map = colormap;    %cindex = [min(codebook1)+.1 codebook1 max(codebook1)-.1];    ZZd = reshape(ZZ(:,1),size(XX,1),size(XX,2));    eval('[C,h]=contourf(XX,YY,ZZd);','warning(''no surface plot feasable'');');     hold on;    eval('clabel(C,h,codebook_cat);',' ');            %    % plotting the datapoints    %    markers = {'*','s','+','o','x','d','v','p','h'};    for c=1:length(codebook_cat),      s = find(osvY(:,1)==codebook_cat(c));      plot(osvX(s,princdim(1)),osvX(s,princdim(2)) ,[markers{1+mod(c-1,9)} 'k']);      legstr{c} = ['class ' num2str(c)];    end    eval('legend(legstr);',' ');            % arrange axis    xlabel(['X_{' num2str(princdim(1)) '}']);    ylabel(['X_{' num2str(princdim(2)) '}']);    title(['LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}, with ' num2str(length(codebook_cat)) ' different classes']);    axis([xmin1 xmax1 xmin2 xmax2]);      hold off;      else        error('cannot display this dimension..');  end      % function estimation (x_dim=1,2; y_dim=1)%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%elseif model.type(1)=='f',  eval('grain;','grain = 200;');      % Determine plot limits     xmin1=min(osvX(:,princdim(1)));   xmax1=max(osvX(:,princdim(1)));       if model.x_dim>=2 & length(princdim)==2,  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%        % Determine plot limits     xmin2=min(osvX(:,princdim(2))); if xmin2<0, xmin2=1.05*xmin2; else xmin2 = 0.975*xmin2; end    xmax2=max(osvX(:,princdim(2))); if xmax2>0, xmax2=1.05*xmax2; else xmax2 = 0.975*xmax2; end    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';    range2 = (xmin2:(xmax2-xmin2)/grain:xmax2)';        rest = zeros(size(range1,1),model.x_dim-2);    for i=1:length(range2),      Xt = [range1 ones(size(range1,1)).*range2(i) rest];      [r,ff,model]  = simlssvm(model, Xt(:,[princdim,restdim]));      z(i,:)=r';    end        surf(range1, range2,z);    hold on;    plot3(osvX(model.selector,princdim(1)),osvX(model.selector,princdim(2)), osvY(model.selector,1),'k*');    shading interp;    xlabel(['X_' num2str(princdim(1))]);    ylabel(['X_' num2str(princdim(2))]);    zlabel('Y');    title([' function estimation using LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '} ']);    view(-30,50);    hold off;  elseif and(model.x_dim==1,model.y_dim==1) | length(princdim)==1,    range1 = (xmin1:(xmax1-xmin1)/grain:xmax1)';     rest = zeros(size(range1,1),model.x_dim-1);    grid = [range1 rest];    [z,ff,model]  = simlssvm(model,grid(:,[princdim(1) restdim]) );     plot(range1,z,'b');    hold on;    plot(osvX(model.selector,princdim(1)),osvY(model.selector,1),'k*');    xlabel('X');    ylabel('Y');    title([' function estimation using  LS-SVM_{\gamma=' num2str(model.gam(1)) ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}']);    %eval('title(['' function estimation using  LS-SVM_{\gamma='' num2str(model.gam(1)) '',\sigma^2='' num2str(model.kernel_pars) ''}^{'' kerneltype ''} datapoints (black *), and estimation  (blue line)'']);',' title(''function approximation using LS-SVM'')');    hold off;  else    Yh = simlssvm(model,osvX);    plot(Yh);    hold on;     plot(osvY,'*k');    xlabel('time');    ylabel('Y');    title([' function estimation using '...	   ' LS-SVM_{\gamma=' num2str(model.gam(1)) ...	   ',\sigma^2=' num2str(model.kernel_pars(1:min(1,length(model.kernel_pars)))) '}^{' model.kernel_type(1:3) '}'...	   ' datapoints (black *), and estimation  (blue line)']);    hold off  end  else    endfprintf('finished\n');

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美一区在线视频| 成人网在线免费视频| 99re热视频精品| 国产精品国产三级国产三级人妇 | 青青草原综合久久大伊人精品 | 日本美女一区二区| 2021中文字幕一区亚洲| 国产乱子轮精品视频| 久久久综合九色合综国产精品| 国产精品中文字幕一区二区三区| 欧美国产成人精品| 欧美视频在线观看一区| 日韩精品电影一区亚洲| 久久视频一区二区| 久久久国产精华| 日韩一区在线播放| 欧美一级黄色录像| 一道本成人在线| 国内久久精品视频| 亚洲综合免费观看高清完整版 | 国产精品性做久久久久久| 精品系列免费在线观看| 亚洲美女电影在线| 日韩欧美国产一区二区三区| 国产99久久精品| 日本vs亚洲vs韩国一区三区二区| 日本午夜精品一区二区三区电影| 蜜臀国产一区二区三区在线播放| 亚洲另类春色校园小说| 国产视频视频一区| 欧美大片在线观看一区二区| 国产亚洲精品bt天堂精选| 欧美国产亚洲另类动漫| 亚洲丰满少妇videoshd| 亚洲私人影院在线观看| 国产精品色眯眯| 国产欧美va欧美不卡在线| 欧美成人性战久久| 日韩免费观看高清完整版| 国产精品日韩成人| 五月天激情小说综合| 亚洲午夜成aⅴ人片| 青青草91视频| 99麻豆久久久国产精品免费优播| 国产精品自拍在线| 欧美片在线播放| 欧美色老头old∨ideo| 在线欧美日韩精品| 欧美羞羞免费网站| 欧美激情一区在线观看| 婷婷成人激情在线网| 成人app下载| 在线视频国内自拍亚洲视频| 2020国产精品久久精品美国| 香蕉久久一区二区不卡无毒影院| 午夜视黄欧洲亚洲| 成人av在线一区二区三区| 精品国产91九色蝌蚪| 国产色产综合产在线视频| 青青草国产成人av片免费| 在线观看亚洲专区| 国产精品久久777777| 国产毛片精品一区| 精品国产一区二区亚洲人成毛片 | 久久久久国产精品免费免费搜索| 亚洲成人tv网| 在线观看视频一区二区| 国产精品国产三级国产| 国产精品一线二线三线| 日韩美女在线视频| 美洲天堂一区二卡三卡四卡视频| 欧美日本在线看| 亚洲国产日韩a在线播放性色| 色综合一个色综合亚洲| 色综合久久久久综合99| 中文字幕一区二区三区不卡| 国产精品白丝jk白祙喷水网站 | 成人午夜激情视频| 国产亚洲一区二区在线观看| 国产真实精品久久二三区| 欧美成人激情免费网| 七七婷婷婷婷精品国产| 日韩欧美中文字幕一区| 日韩在线一区二区| 欧美一级夜夜爽| 九九在线精品视频| 国产夜色精品一区二区av| 国产大片一区二区| 欧美日韩国产高清一区二区三区 | 日韩一区中文字幕| 91精品福利视频| 久久精品视频一区| 国产成人在线视频网站| 国产精品久久久久久久久免费丝袜| 成人av网址在线| 夜夜爽夜夜爽精品视频| 国产精品99久久久久久久vr | 在线不卡免费欧美| 国产精品无遮挡| 97精品久久久久中文字幕| 亚洲成a天堂v人片| 久久婷婷久久一区二区三区| 成人99免费视频| 亚洲成a人片综合在线| 日韩欧美亚洲国产精品字幕久久久| 激情六月婷婷综合| 亚洲丝袜另类动漫二区| 3atv在线一区二区三区| 亚洲制服丝袜在线| 26uuu久久天堂性欧美| 91丨porny丨中文| 国产精品久久精品日日| 欧美一区二区三区在线视频| 国产精品自在在线| 偷拍亚洲欧洲综合| 国产精品热久久久久夜色精品三区 | 国产精品综合av一区二区国产馆| 综合久久给合久久狠狠狠97色| 欧美女孩性生活视频| 国产成人综合自拍| 日韩精品视频网站| 亚洲欧美另类图片小说| 精品国产乱码久久久久久浪潮 | 成人免费毛片app| 三级影片在线观看欧美日韩一区二区| 久久婷婷成人综合色| 91精品国产综合久久精品麻豆| 岛国一区二区三区| 久久综合综合久久综合| 精品1区2区在线观看| 在线观看一区日韩| av中文字幕亚洲| 国产成人在线影院| 国产美女精品一区二区三区| 亚洲成a人片在线观看中文| 亚洲天堂精品视频| 国产精品视频线看| 中文字幕乱码一区二区免费| 日韩一级片在线观看| 91精品在线免费| 欧美亚洲丝袜传媒另类| 色屁屁一区二区| 97久久精品人人做人人爽 | 亚洲精品免费在线观看| 国产日韩欧美精品在线| 欧美α欧美αv大片| 欧美一区二区三区免费大片| 在线视频欧美精品| 欧美三级电影网| 在线观看视频91| 欧美天天综合网| 在线观看欧美日本| 欧美亚洲免费在线一区| 欧美在线看片a免费观看| 99这里只有精品| 91国产免费看| 欧美日韩精品二区第二页| 欧美午夜影院一区| 欧美日韩美女一区二区| 欧美一级二级三级蜜桃| 精品国产污污免费网站入口| 精品va天堂亚洲国产| 国产午夜精品久久久久久免费视| 久久精品人人做人人爽人人| 欧美激情资源网| 亚洲欧美国产77777| 亚洲在线一区二区三区| 日韩精品成人一区二区在线| 九色综合狠狠综合久久| 成人久久18免费网站麻豆| 99久久er热在这里只有精品15| 日本韩国一区二区三区| 在线观看欧美精品| 欧美大片顶级少妇| 亚洲欧美中日韩| 日本午夜精品一区二区三区电影| 国产在线日韩欧美| aaa欧美日韩| 在线播放亚洲一区| 国产无一区二区| 亚洲第四色夜色| 国产一区二区导航在线播放| av在线综合网| 欧美一区二区三区免费观看视频| 精品区一区二区| 国产丝袜美腿一区二区三区| 亚洲男同1069视频| 国产一区二区看久久| 色偷偷久久人人79超碰人人澡 | 不卡视频免费播放| 欧美午夜电影在线播放| 久久久久国产精品麻豆ai换脸 | 在线观看日韩电影| 精品动漫一区二区三区在线观看| 亚洲精品综合在线| 国产成人精品综合在线观看| 欧美日韩免费高清一区色橹橹 | 国产网红主播福利一区二区| 亚洲综合自拍偷拍| 国产精品99久久久久久久女警|