亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? jquant2.c

?? 一款最完整的工業組態軟源代碼
?? C
?? 第 1 頁 / 共 4 頁
字號:
/*
 * jquant2.c
 *
 * Copyright (C) 1991-1996, Thomas G. Lane.
 * This file is part of the Independent JPEG Group's software.
 * For conditions of distribution and use, see the accompanying README file.
 *
 * This file contains 2-pass color quantization (color mapping) routines.
 * These routines provide selection of a custom color map for an image,
 * followed by mapping of the image to that color map, with optional
 * Floyd-Steinberg dithering.
 * It is also possible to use just the second pass to map to an arbitrary
 * externally-given color map.
 *
 * Note: ordered dithering is not supported, since there isn't any fast
 * way to compute intercolor distances; it's unclear that ordered dither's
 * fundamental assumptions even hold with an irregularly spaced color map.
 */

#define JPEG_INTERNALS
#include "jinclude.h"
#include "jpeglib.h"

#ifdef QUANT_2PASS_SUPPORTED


/*
 * This module implements the well-known Heckbert paradigm for color
 * quantization.  Most of the ideas used here can be traced back to
 * Heckbert's seminal paper
 *   Heckbert, Paul.  "Color Image Quantization for Frame Buffer Display",
 *   Proc. SIGGRAPH '82, Computer Graphics v.16 #3 (July 1982), pp 297-304.
 *
 * In the first pass over the image, we accumulate a histogram showing the
 * usage count of each possible color.  To keep the histogram to a reasonable
 * size, we reduce the precision of the input; typical practice is to retain
 * 5 or 6 bits per color, so that 8 or 4 different input values are counted
 * in the same histogram cell.
 *
 * Next, the color-selection step begins with a box representing the whole
 * color space, and repeatedly splits the "largest" remaining box until we
 * have as many boxes as desired colors.  Then the mean color in each
 * remaining box becomes one of the possible output colors.
 * 
 * The second pass over the image maps each input pixel to the closest output
 * color (optionally after applying a Floyd-Steinberg dithering correction).
 * This mapping is logically trivial, but making it go fast enough requires
 * considerable care.
 *
 * Heckbert-style quantizers vary a good deal in their policies for choosing
 * the "largest" box and deciding where to cut it.  The particular policies
 * used here have proved out well in experimental comparisons, but better ones
 * may yet be found.
 *
 * In earlier versions of the IJG code, this module quantized in YCbCr color
 * space, processing the raw upsampled data without a color conversion step.
 * This allowed the color conversion math to be done only once per colormap
 * entry, not once per pixel.  However, that optimization precluded other
 * useful optimizations (such as merging color conversion with upsampling)
 * and it also interfered with desired capabilities such as quantizing to an
 * externally-supplied colormap.  We have therefore abandoned that approach.
 * The present code works in the post-conversion color space, typically RGB.
 *
 * To improve the visual quality of the results, we actually work in scaled
 * RGB space, giving G distances more weight than R, and R in turn more than
 * B.  To do everything in integer math, we must use integer scale factors.
 * The 2/3/1 scale factors used here correspond loosely to the relative
 * weights of the colors in the NTSC grayscale equation.
 * If you want to use this code to quantize a non-RGB color space, you'll
 * probably need to change these scale factors.
 */

#define R_SCALE 2		/* scale R distances by this much */
#define G_SCALE 3		/* scale G distances by this much */
#define B_SCALE 1		/* and B by this much */

/* Relabel R/G/B as components 0/1/2, respecting the RGB ordering defined
 * in jmorecfg.h.  As the code stands, it will do the right thing for R,G,B
 * and B,G,R orders.  If you define some other weird order in jmorecfg.h,
 * you'll get compile errors until you extend this logic.  In that case
 * you'll probably want to tweak the histogram sizes too.
 */

#if RGB_RED == 0
#define C0_SCALE R_SCALE
#endif
#if RGB_BLUE == 0
#define C0_SCALE B_SCALE
#endif
#if RGB_GREEN == 1
#define C1_SCALE G_SCALE
#endif
#if RGB_RED == 2
#define C2_SCALE R_SCALE
#endif
#if RGB_BLUE == 2
#define C2_SCALE B_SCALE
#endif


/*
 * First we have the histogram data structure and routines for creating it.
 *
 * The number of bits of precision can be adjusted by changing these symbols.
 * We recommend keeping 6 bits for G and 5 each for R and B.
 * If you have plenty of memory and cycles, 6 bits all around gives marginally
 * better results; if you are short of memory, 5 bits all around will save
 * some space but degrade the results.
 * To maintain a fully accurate histogram, we'd need to allocate a "long"
 * (preferably unsigned long) for each cell.  In practice this is overkill;
 * we can get by with 16 bits per cell.  Few of the cell counts will overflow,
 * and clamping those that do overflow to the maximum value will give close-
 * enough results.  This reduces the recommended histogram size from 256Kb
 * to 128Kb, which is a useful savings on PC-class machines.
 * (In the second pass the histogram space is re-used for pixel mapping data;
 * in that capacity, each cell must be able to store zero to the number of
 * desired colors.  16 bits/cell is plenty for that too.)
 * Since the JPEG code is intended to run in small memory model on 80x86
 * machines, we can't just allocate the histogram in one chunk.  Instead
 * of a true 3-D array, we use a row of pointers to 2-D arrays.  Each
 * pointer corresponds to a C0 value (typically 2^5 = 32 pointers) and
 * each 2-D array has 2^6*2^5 = 2048 or 2^6*2^6 = 4096 entries.  Note that
 * on 80x86 machines, the pointer row is in near memory but the actual
 * arrays are in far memory (same arrangement as we use for image arrays).
 */

#define MAXNUMCOLORS  (MAXJSAMPLE+1) /* maximum size of colormap */

/* These will do the right thing for either R,G,B or B,G,R color order,
 * but you may not like the results for other color orders.
 */
#define HIST_C0_BITS  5		/* bits of precision in R/B histogram */
#define HIST_C1_BITS  6		/* bits of precision in G histogram */
#define HIST_C2_BITS  5		/* bits of precision in B/R histogram */

/* Number of elements along histogram axes. */
#define HIST_C0_ELEMS  (1<<HIST_C0_BITS)
#define HIST_C1_ELEMS  (1<<HIST_C1_BITS)
#define HIST_C2_ELEMS  (1<<HIST_C2_BITS)

/* These are the amounts to shift an input value to get a histogram index. */
#define C0_SHIFT  (BITS_IN_JSAMPLE-HIST_C0_BITS)
#define C1_SHIFT  (BITS_IN_JSAMPLE-HIST_C1_BITS)
#define C2_SHIFT  (BITS_IN_JSAMPLE-HIST_C2_BITS)


typedef UINT16 histcell;	/* histogram cell; prefer an unsigned type */

typedef histcell FAR * histptr;	/* for pointers to histogram cells */

typedef histcell hist1d[HIST_C2_ELEMS]; /* typedefs for the array */
typedef hist1d FAR * hist2d;	/* type for the 2nd-level pointers */
typedef hist2d * hist3d;	/* type for top-level pointer */


/* Declarations for Floyd-Steinberg dithering.
 *
 * Errors are accumulated into the array fserrors[], at a resolution of
 * 1/16th of a pixel count.  The error at a given pixel is propagated
 * to its not-yet-processed neighbors using the standard F-S fractions,
 *		...	(here)	7/16
 *		3/16	5/16	1/16
 * We work left-to-right on even rows, right-to-left on odd rows.
 *
 * We can get away with a single array (holding one row's worth of errors)
 * by using it to store the current row's errors at pixel columns not yet
 * processed, but the next row's errors at columns already processed.  We
 * need only a few extra variables to hold the errors immediately around the
 * current column.  (If we are lucky, those variables are in registers, but
 * even if not, they're probably cheaper to access than array elements are.)
 *
 * The fserrors[] array has (#columns + 2) entries; the extra entry at
 * each end saves us from special-casing the first and last pixels.
 * Each entry is three values long, one value for each color component.
 *
 * Note: on a wide image, we might not have enough room in a PC's near data
 * segment to hold the error array; so it is allocated with alloc_large.
 */

#if BITS_IN_JSAMPLE == 8
typedef INT16 FSERROR;		/* 16 bits should be enough */
typedef int LOCFSERROR;		/* use 'int' for calculation temps */
#else
typedef INT32 FSERROR;		/* may need more than 16 bits */
typedef INT32 LOCFSERROR;	/* be sure calculation temps are big enough */
#endif

typedef FSERROR FAR *FSERRPTR;	/* pointer to error array (in FAR storage!) */


/* Private subobject */

typedef struct {
  struct jpeg_color_quantizer pub; /* public fields */

  /* Space for the eventually created colormap is stashed here */
  JSAMPARRAY sv_colormap;	/* colormap allocated at init time */
  int desired;			/* desired # of colors = size of colormap */

  /* Variables for accumulating image statistics */
  hist3d histogram;		/* pointer to the histogram */

  boolean needs_zeroed;		/* TRUE if next pass must zero histogram */

  /* Variables for Floyd-Steinberg dithering */
  FSERRPTR fserrors;		/* accumulated errors */
  boolean on_odd_row;		/* flag to remember which row we are on */
  int * error_limiter;		/* table for clamping the applied error */
} my_cquantizer;

typedef my_cquantizer * my_cquantize_ptr;


/*
 * Prescan some rows of pixels.
 * In this module the prescan simply updates the histogram, which has been
 * initialized to zeroes by start_pass.
 * An output_buf parameter is required by the method signature, but no data
 * is actually output (in fact the buffer controller is probably passing a
 * NULL pointer).
 */

METHODDEF(void)
prescan_quantize (j_decompress_ptr cinfo, JSAMPARRAY input_buf,
		  JSAMPARRAY output_buf, int num_rows)
{
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  register JSAMPROW ptr;
  register histptr histp;
  register hist3d histogram = cquantize->histogram;
  int row;
  JDIMENSION col;
  JDIMENSION width = cinfo->output_width;

  for (row = 0; row < num_rows; row++) {
    ptr = input_buf[row];
    for (col = width; col > 0; col--) {
      /* get pixel value and index into the histogram */
      histp = & histogram[GETJSAMPLE(ptr[0]) >> C0_SHIFT]
			 [GETJSAMPLE(ptr[1]) >> C1_SHIFT]
			 [GETJSAMPLE(ptr[2]) >> C2_SHIFT];
      /* increment, check for overflow and undo increment if so. */
      if (++(*histp) <= 0)
	(*histp)--;
      ptr += 3;
    }
  }
}


/*
 * Next we have the really interesting routines: selection of a colormap
 * given the completed histogram.
 * These routines work with a list of "boxes", each representing a rectangular
 * subset of the input color space (to histogram precision).
 */

typedef struct {
  /* The bounds of the box (inclusive); expressed as histogram indexes */
  int c0min, c0max;
  int c1min, c1max;
  int c2min, c2max;
  /* The volume (actually 2-norm) of the box */
  INT32 volume;
  /* The number of nonzero histogram cells within this box */
  long colorcount;
} box;

typedef box * boxptr;


LOCAL(boxptr)
find_biggest_color_pop (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest color population */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register long maxc = 0;
  boxptr which = NULL;
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    if (boxp->colorcount > maxc && boxp->volume > 0) {
      which = boxp;
      maxc = boxp->colorcount;
    }
  }
  return which;
}


LOCAL(boxptr)
find_biggest_volume (boxptr boxlist, int numboxes)
/* Find the splittable box with the largest (scaled) volume */
/* Returns NULL if no splittable boxes remain */
{
  register boxptr boxp;
  register int i;
  register INT32 maxv = 0;
  boxptr which = NULL;
  
  for (i = 0, boxp = boxlist; i < numboxes; i++, boxp++) {
    if (boxp->volume > maxv) {
      which = boxp;
      maxv = boxp->volume;
    }
  }
  return which;
}


LOCAL(void)
update_box (j_decompress_ptr cinfo, boxptr boxp)
/* Shrink the min/max bounds of a box to enclose only nonzero elements, */
/* and recompute its volume and population */
{
  my_cquantize_ptr cquantize = (my_cquantize_ptr) cinfo->cquantize;
  hist3d histogram = cquantize->histogram;
  histptr histp;
  int c0,c1,c2;
  int c0min,c0max,c1min,c1max,c2min,c2max;
  INT32 dist0,dist1,dist2;
  long ccount;
  
  c0min = boxp->c0min;  c0max = boxp->c0max;
  c1min = boxp->c1min;  c1max = boxp->c1max;
  c2min = boxp->c2min;  c2max = boxp->c2max;
  

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成人激情免费电影网址| 亚洲一区二三区| 欧美亚洲综合在线| 91久久免费观看| 欧美综合在线视频| 亚洲国产精品久久一线不卡| 日本久久电影网| 欧美日韩的一区二区| 久久精品999| 亚洲精品一区二区三区99| 色综合欧美在线| 国产视频亚洲色图| 17c精品麻豆一区二区免费| 一区二区不卡在线播放| 日韩精品一级中文字幕精品视频免费观看 | 激情伊人五月天久久综合| 亚洲欧美激情视频在线观看一区二区三区 | 美女脱光内衣内裤视频久久网站| 欧美人妇做爰xxxⅹ性高电影| 亚洲欧洲中文日韩久久av乱码| 国产91色综合久久免费分享| 欧美大黄免费观看| 亚洲女与黑人做爰| 欧美日韩一区不卡| 日韩免费看网站| 久久精品久久99精品久久| 制服丝袜日韩国产| 日韩天堂在线观看| 亚洲欧美一区二区久久| 色先锋资源久久综合| 亚洲一区二区视频在线| 欧美丰满美乳xxx高潮www| 2020日本不卡一区二区视频| 成人av网站免费| 国产精品全国免费观看高清| 欧美情侣在线播放| 成人一区二区在线观看| 午夜国产精品一区| 国产亚洲一区二区三区四区| 成人一区二区三区中文字幕| 一区在线观看视频| 日韩一区二区三区在线| 大胆欧美人体老妇| 国内久久精品视频| 日韩va欧美va亚洲va久久| 国产精品欧美久久久久无广告 | 日本一区二区三区四区| 五月婷婷久久综合| 国产精品福利av| 精品久久五月天| 91麻豆精品国产91久久久久| 91丝袜呻吟高潮美腿白嫩在线观看| 久久成人羞羞网站| 夜夜精品视频一区二区| 欧美精品一区二区三区蜜臀| 69av一区二区三区| 国产一区二区三区精品欧美日韩一区二区三区 | 天天亚洲美女在线视频| 一区二区视频在线| 亚洲免费在线视频一区 二区| 国产欧美精品一区二区色综合 | 亚洲一区视频在线观看视频| 一卡二卡欧美日韩| 国产精品成人在线观看| 中文字幕一区二区三区精华液| 久久亚洲综合色| 中文字幕高清一区| 亚洲免费在线观看| 亚洲一区二区中文在线| 午夜欧美在线一二页| 日韩在线a电影| 久久 天天综合| 国产一区二区h| 国产69精品久久久久777| 成人激情电影免费在线观看| 高清shemale亚洲人妖| 99久久伊人网影院| 欧美日韩精品是欧美日韩精品| 欧美二区在线观看| 精品久久久久一区二区国产| 国产欧美精品一区二区色综合朱莉| 国产精品美女久久久久久2018| 日韩精品一级二级 | 欧美国产精品中文字幕| 美女脱光内衣内裤视频久久网站 | 欧美激情一区二区| 日韩电影在线观看网站| 欧美亚洲精品一区| 亚洲欧洲综合另类| 9l国产精品久久久久麻豆| 精品国产乱子伦一区| 久久精品国产亚洲高清剧情介绍| 欧美色区777第一页| 亚洲与欧洲av电影| 欧美中文字幕一区| 亚洲高清在线视频| 欧美日韩视频一区二区| 午夜av一区二区三区| 欧美日韩一区 二区 三区 久久精品| 中文字幕综合网| 不卡的av电影| 亚洲人成亚洲人成在线观看图片| av成人老司机| 亚洲一区二区三区爽爽爽爽爽| 成人黄页在线观看| 国产精品激情偷乱一区二区∴| www.日韩在线| 亚洲自拍偷拍网站| 日韩一区二区三免费高清| 日韩和的一区二区| 精品不卡在线视频| 国产69精品久久久久777| 日韩理论片一区二区| 欧美三级三级三级爽爽爽| 亚洲欧美偷拍卡通变态| 色国产综合视频| 一区二区三区不卡视频在线观看| 在线观看日韩高清av| 亚洲日本一区二区| 欧美日韩久久不卡| 国产一区二区三区在线观看精品 | av在线播放成人| 亚洲高清免费观看| 91精品国产综合久久精品性色| 天天射综合影视| 久久色在线视频| 在线播放亚洲一区| 色综合天天视频在线观看| 日韩av二区在线播放| 亚洲欧美一区二区三区极速播放| 久久日韩精品一区二区五区| av中文字幕在线不卡| 另类的小说在线视频另类成人小视频在线 | 国产精品国产三级国产aⅴ原创| 高清日韩电视剧大全免费| 亚洲欧美在线观看| 国产精品天美传媒| 国产视频亚洲色图| 欧美大片在线观看一区二区| 99久久综合色| 26uuuu精品一区二区| 日本久久一区二区| 99免费精品视频| 国产成人精品免费| 美女精品自拍一二三四| 亚洲乱码日产精品bd| 亚洲日本韩国一区| 国产精品午夜在线| 国产精品国产三级国产| 国产精品国产成人国产三级 | 久久国产精品色| 免费看黄色91| 日韩电影在线观看电影| 国产精品美女久久久久av爽李琼| 精品日韩欧美一区二区| 日韩一区二区三区高清免费看看 | 一区二区三区四区国产精品| 亚洲大型综合色站| 中日韩免费视频中文字幕| 国产女人18毛片水真多成人如厕 | 国产精品99久久久久久久女警 | 国产一区二区导航在线播放| 看电影不卡的网站| 国产美女av一区二区三区| 国产麻豆9l精品三级站| 国产成人a级片| av高清不卡在线| 欧美色图在线观看| 欧美日本韩国一区| 91精品国产综合久久精品app| 日韩一区二区在线观看视频| 国产欧美一区二区精品忘忧草| 五月婷婷欧美视频| 国内精品伊人久久久久av影院| 韩国v欧美v日本v亚洲v| eeuss鲁片一区二区三区在线看| 欧美伊人精品成人久久综合97 | 视频一区二区欧美| 久久精品二区亚洲w码| 99视频国产精品| 久久日一线二线三线suv| 亚洲精品日韩综合观看成人91| 亚洲国产人成综合网站| 国产在线精品视频| 欧美久久久久免费| 亚洲黄色尤物视频| 国产成人夜色高潮福利影视| www.欧美色图| 日韩女同互慰一区二区| 亚洲日本va在线观看| 国产一区激情在线| 欧美一区二区播放| 日韩在线卡一卡二| 欧美日韩一区二区欧美激情| 18涩涩午夜精品.www| jlzzjlzz欧美大全| 日韩国产高清影视| 欧美日韩一区视频| 久久99久久久久| 亚洲午夜精品网|