?? readme.txt
字號:
光盤使用指南
本光盤包括一個子目錄,為DELPHI_SHU:該子目錄下的內容如下:
Volume in drive D has no label
Volume Serial Number is 12FE-1A1D
Directory of D:\Delphi_SHU
. <DIR> 03-20-01 20:03 .
.. <DIR> 03-20-01 20:03 ..
C1 <DIR> 03-20-01 20:03 C1
C10 <DIR> 03-20-01 20:03 C10
C11 <DIR> 03-20-01 20:03 C11
C12 <DIR> 03-20-01 20:03 C12
C13 <DIR> 03-20-01 20:03 C13
C2 <DIR> 03-20-01 20:03 C2
C3 <DIR> 03-20-01 20:03 C3
C4 <DIR> 03-20-01 20:03 C4
C5 <DIR> 03-20-01 20:03 C5
C6 <DIR> 03-20-01 20:03 C6
C7 <DIR> 03-20-01 20:03 C7
C8 <DIR> 03-20-01 20:03 C8
C9 <DIR> 03-20-01 20:03 C9
D1 <DIR> 03-20-01 20:03 D1
D10 <DIR> 03-20-01 20:03 D10
D11 <DIR> 03-20-01 20:03 D11
D12 <DIR> 03-20-01 20:03 D12
D13 <DIR> 03-20-01 20:03 D13
D2 <DIR> 03-20-01 20:03 D2
D3 <DIR> 03-20-01 20:03 D3
D4 <DIR> 03-20-01 20:03 D4
D5 <DIR> 03-20-01 20:03 D5
D6 <DIR> 03-20-01 20:03 D6
D7 <DIR> 03-20-01 20:03 D7
D8 <DIR> 03-20-01 20:03 D8
D9 <DIR> 03-20-01 20:03 D9
P1 <DIR> 04-01-01 14:25 P1
P10 <DIR> 03-20-01 20:03 P10
P11 <DIR> 03-20-01 20:03 P11
P12 <DIR> 03-20-01 20:03 P12
P13 <DIR> 03-20-01 20:03 P13
P2 <DIR> 03-20-01 20:03 P2
P3 <DIR> 03-20-01 20:03 P3
P4 <DIR> 03-20-01 20:03 P4
P5 <DIR> 03-20-01 20:04 P5
P6 <DIR> 03-20-01 20:04 P6
P7 <DIR> 03-20-01 20:04 P7
P8 <DIR> 03-20-01 20:04 P8
P9 <DIR> 03-20-01 20:04 P9
V1 <DIR> 03-20-01 20:04 V1
V10 <DIR> 03-20-01 20:04 V10
V11 <DIR> 03-20-01 20:04 V11
V12 <DIR> 03-20-01 20:04 V12
V13 <DIR> 03-20-01 20:04 V13
V2 <DIR> 03-20-01 20:04 V2
V3 <DIR> 03-20-01 20:04 V3
V4 <DIR> 03-20-01 20:04 V4
V5 <DIR> 03-20-01 20:04 V5
V6 <DIR> 03-20-01 20:04 V6
V7 <DIR> 03-20-01 20:04 V7
V8 <DIR> 03-20-01 20:04 V8
V9 <DIR> 03-20-01 20:04 V9
README TXT 3,573 07-15-01 9:28 readme.txt
7 file(s) 112,743 bytes
54 dir(s) 1,370,005,504 bytes free
1、說明:
本書中所有的常用數值算法子過程按書中的章數分別放在以C開頭的子目錄中。
所有這些為驗證上述子過程而編的驗證過程按書中的章數分別放在以D開頭的子目錄中。
所有為驗證過程而做的工程,按書中的章數分別放在以V開頭的子目錄中。
2、使用:
1)最簡單的做法是若D盤有大于50M的空間,讀者只須將光盤上的子目錄“DELPHI_SHU”
復制到D:\ 下即可。
2)若D盤空間緊張,這時,讀者可在D盤上建名為“DELPHI_SHU”的子目錄,再在該子目
錄下依此建名為P1-P1的子目錄也可。
做完以上的準備工作后,然后配合書中的說明,在Delphi系統下直接調用D:\DELPHI_SHU
下或光盤中以V開頭的子目錄中的工程,按運行鍵,即顯示計算結果,從而可迅速,方便地使
用該算法。達到事半功倍的效果。
3、本書目錄列表:
第1章線性代數方程組的解法
1.全主元高斯約當消去法
2.LU分解法
3.追趕法
4.五對角線性方程組解法
5.線性方程組解的迭代改善
6.范德蒙方程組解法
7.托伯利茲方程組解法
8.奇異值分解
9.線性方程組的共軛梯度法
10.對稱方程組的喬列斯基分解法
11.矩陣的QR分解
12.松弛迭代法
第2章插值
1.拉格朗日插值
2.有理函數插值
3.三次樣條插值
4.有序表的檢索法
5.插值多項式
6.二元拉格朗日插值
7.雙三次樣條插值
第3章數值積分
1.梯形求積法
2.辛普森求積法
3.龍貝格求積法
4.反常積分
5.高斯求積法
6.三重積分
第4章特殊函數
1.г函數、貝塔函數、階乘及二項式系數
2.不完全г函數、誤差函數
3.不完全貝塔函數
4.零階、一階和任意整數階的第一、二類貝賽函數
5.零階、一階和任意整數階的第一、二類變形貝賽函數
6.分數階第一類貝賽爾函數和變形貝賽爾函數
7.指數積分和定指數積分
8.連帶勒讓德函數
第5章函數逼近
1.級數求和
2.多項式和有理函數
3.切比雪夫逼近
4.積分和導數的切比雪夫逼近
5.有切比雪夫逼近函數的多項式逼近
第6章特征值問題
1.對稱矩陣的雅可比變換
2.變實對稱矩陣為三對角對稱矩陣
3.三對角矩陣的特征值和特征向量
4.變一般矩陣為赫申伯格矩陣
5.實赫申伯格矩陣的QR算法
第7章數據擬合
1.直線擬合
2.線性最小二乘法
3.非線性最小二乘法
4.絕對值偏差最小的直線擬合
第8章方程求根和非線性方程組的解法
1.圖解法
2.逐步掃描法和二分法
3.割線法和試位法
4.布倫特方法
5.牛頓拉斐森法
6.求復系數多項式根的拉蓋爾方法
7.求實系數多項式根的貝爾斯托方法
8.非線性方程組的牛頓拉斐斯方法
第9章函數的極值和最優化
1.黃金分割搜索法
2.不用導數的布倫特法
3.用導數的布倫特法
4.多元函數的下山單純形法
5.多元函數的包維爾法
6.多元函數的共軛梯度法
7.多元函數的變尺度法
8.線性規劃的單純形法
第10章傅里葉變換譜方法
1.復數據快速傅里葉變換算法
2.實數據快速傅里葉變換算法一
3.實數據快速傅里葉變換算法二
4.快速正弦變換和余弦變換
5.卷積和逆卷積的快速算法
6.離散相關和自相關的快速算法
7.多維快速傅里葉變換算法
第11章數據的統計描述
1.分布的矩——均值、平均差、標準差、方差、斜差和峰態
2.中位數的搜索
3.均值與方差的顯著性檢驗
4.分布擬合的X平方檢驗
5.分布擬合的K-S檢驗法
第12章解常微分方程組
1.定步長四階龍格庫塔法
2.自適應變步長的龍格庫塔法
3.改進的中點法
4.外推法
第13章偏微分方程的解法
1.解邊值問題的松馳法
2.交替方向隱式方法
這些算法將為千千萬萬非計算機專業的工程技術人員架起一座方便快捷的橋梁,
并能縮短應用軟件的編制周期,減少重復勞動,達到事業功倍的效果。
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -