亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? dual.htm

?? optimization toolbox
?? HTM
?? 第 1 頁 / 共 2 頁
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>

<head>
<meta http-equiv="Content-Language" content="en-us">
<title>YALMIP Example : Dual variables</title>
<meta http-equiv="Content-Type" content="text/html; charset=windows-1251">
<meta content="Microsoft FrontPage 6.0" name="GENERATOR">
<meta name="ProgId" content="FrontPage.Editor.Document">
<link href="yalmip.css" type="text/css" rel="stylesheet">
<base target="_self">
</head>

<body leftMargin="0" topMargin="0">

<div align="left">

<table border="0" cellpadding="4" cellspacing="3" style="border-collapse: collapse" bordercolor="#000000" width="100%" align="left" height="100%">
  <tr>
    <td width="100%" align="left" height="100%" valign="top">
           <h2>Duality</h2>
    <hr noShade SIZE="1">
    <p>Problems in YALMIP are internally written in the following format (this 
    will be referred to the dual form, or dual type representation)</p>
    <strong>
    <blockquote dir="ltr" style="MARGIN-RIGHT: 0px">
      <p><img border="0" src="dualform.gif" width="231" height="124"></p>
    </blockquote>
    </strong>
    <p>The dual to this problem is (called the primal form)</p>
           <div align="left">
    <img border="0" src="primalform.gif" width="243" height="78"></div>
    <strong>
    </strong>
           <h3>Dual variables</h3>
			<p>The dual (dual in the sense that it is the dual related to a user 
			defined constraint) variable <b>
                 <font face="Tahoma,Arial,sans-serif">X </font></b>can be obtained using YALMIP. Consider the following 
    version of the
    <a href="lyapunov.htm">
    Lyapunov stability</a> example (of-course, dual variables in LP, QP and SOCP 
    problems can also be extracted)</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>F = set(P &gt; eye(n),'Normalize');
F = F + set(A'*P+P*A &lt; 0,'Lyapunov');
solution = solvesdp(F,trace(P));</pre>
        </td>
      </tr>
    </table>
    <p>The dual variables related to the constraints <b>
    <font face="Tahoma,Arial,sans-serif">P&gt;I</font></b> and <b>
    <font face="Tahoma">A<sup>T</sup>P+PA&lt; 
    0</font></b> can be 
    obtained by using the command dual and indexing of lmi-objects.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>Z1 = dual(F('Normalize'))
Z2 = dual(F('Lyapunov'))</pre>
        </td>
      </tr>
    </table>
    <p>Standard indexing can also be used.</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>Z1 = dual(F(1))
Z2 = dual(F(2))</pre>
        </td>
      </tr>
    </table>
    <p>Complementary slackness can easily be checked since 
    <a href="reference.htm#double">double</a> is overloaded 
    on lmi-objects..</p>
    <table cellPadding="10" width="100%">
      <tr>
        <td class="xmpcode">
        <pre>trace(dual(F(1))*double(F(1)))
trace(dual(F(2))*double(F(2)))</pre>
        </td>
      </tr>
    </table>
    <p>Notice, <code>double(F(1))</code> returns <code>double(0-(A'*P+P*A))</code>.<h3>
           <a name="dualize"></a>Dualize 
			</h3>
           <p>Important to note is that problems in YALMIP are modeled 
           internally in the dual format (your primal <i>problem</i> is in dual <i>
           form</i>). In control theory and many other fields, this is the 
           natural representation (we have a number of variables on which we 
           have inequality constraints), but in some fields (combinatorial 
           optimization), the primal form is often more natural.<p>Due to the choice 
           to work in the dual form, some problems are treated very 
           inefficiently in YALMIP. Consider the following problem in YALMIP.<table cellpadding="10" width="100%">
                <tr>
                  <td class="xmpcode">
                  <pre>X = sdpvar(30,30);
Y = sdpvar(3,3);
obj = trace(X)+trace(Y);
F = set(X&gt;0) + set(Y&gt;0);
F = F + set(X(1,3)==9) + set(Y(1,1)==X(2,2)) + set(sum(sum(X))+sum(sum(Y)) == 20)
<font color="#000000">+++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|                      Type|
+++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|   Matrix inequality 30x30|
|   #2|   Numeric value|     Matrix inequality 3x3|
|   #3|   Numeric value|   Equality constraint 1x1|
|   #4|   Numeric value|   Equality constraint 1x1|
|   #5|   Numeric value|   Equality constraint 1x1|
+++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
                  </td>
                </tr>
              </table>
              <p>YALMIP will <i>explicitly</i> parameterize the variable <b>X</b> 
              with free 465 variables, <b>Y</b> with 6 free variables, create 
              two semidefinite constraints and introduce 3 equality constraints 
              in the dual form representation, corresponding to&nbsp; 471 equality 
              constraint, 2 semidefinite cones and 3 free variables in the 
              primal form.&nbsp; If we instead would have solved this 
              directly in the stated primal form, we have 3 equality 
              constraints, 2 semidefinite cones and no free variables, 
              corresponding to a dual form with 3 variables and two 
              semidefinite constraints. The computational effort is mainly 
              affected by the number of variables in the dual form and the size of the 
              semidefinite cones. Moreover, many solvers have robustness 
              problems with free variables in the primal form (equalities in the 
              dual form). Hence, in this case, this problem can probably be solved 
              much more efficiently if we could use an alternative model.<p>The 
           command <a href="reference.htm#dualize">dualize</a> can be used to 
           extract the primal form, and return the dual of 
           this problem in YALMIPs preferred dual form.<table cellpadding="10" width="100%">
                <tr>
                  <td class="xmpcode">
                  <pre>[Fd,objd,primals] = dualize(F,obj);Fd
<font color="#000000">+++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|                      Type|
+++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|   Matrix inequality 30x30|
|   #2|   Numeric value|     Matrix inequality 3x3|
+++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
                  </td>
                </tr>
              </table>
              <p>If we solve this problem in dual form, the duals to the 
              constraints in <b>Fd</b> will correspond 
              to the original variables <b>X</b> and <b>Y</b>. The optimal values of these 
              variables can be reconstructed easily (note that the dual problem 
              is a maximization problem)<table cellpadding="10" width="100%">
                <tr>
                  <td class="xmpcode">
                  <pre>solvesdp(Fd,-objd);
for i = 1:length(primals);assign(primals{i},dual(Fd(i)));end</pre>
                  </td>
                </tr>
              </table>
              <p>Variables are actually automatically updated, so the second 
				line in the code above is not needed (but can be useful to 
				understand what is happening). Hence, the following code is 
				equivalent.</p><table cellpadding="10" width="100%" id="table1">
                <tr>
                  <td class="xmpcode">
                  <pre>solvesdp(Fd,-objd);</pre>
                  </td>
                </tr>
              </table>
              <p>The procedure can be applied also to problems with free 
              variables in the primal form, corresponding to equality 
              constraints in the dual form.</p>
           <table cellpadding="10" width="100%">
                <tr>
                  <td class="xmpcode">
                  <pre>X = sdpvar(2,2);
t = sdpvar(2,1);
Y = sdpvar(3,3);
obj = trace(X)+trace(Y)+5*sum(t);

F = set(sum(X) == 6+pi*t(1)) + set(diag(Y) == -2+exp(1)*t(2))
F = F + set(Y&gt;0) + set(X&gt;0);

solvesdp(F,obj);
double(t)
<font color="#000000">ans =</font></pre>
                  <pre><font color="#000000">   -1.9099
    0.7358</font></pre>
                  <pre>[Fd,objd,primals,free] = dualize(F,obj);Fd
<font color="#000000">+++++++++++++++++++++++++++++++++++++++++++++++++++
|   ID|      Constraint|                      Type|
+++++++++++++++++++++++++++++++++++++++++++++++++++
|   #1|   Numeric value|     Matrix inequality 3x3|
|   #2|   Numeric value|     Matrix inequality 2x2|
|   #3|   Numeric value|   Equality constraint 2x1|
+++++++++++++++++++++++++++++++++++++++++++++++++++</font></pre>
                  </td>
                </tr>
              </table>
              <p>The detected free variables are returned as the 4th output, and 
				can be recovered from the dual to the equality constraints (this 
				is also done automatically by YALMIP in practice, see above).</p>
           <table cellpadding="10" width="100%">
                <tr>
                  <td class="xmpcode">
                  <pre>solvesdp(Fd,-objd);
assign(free,dual(Fd(end)))
double(t)
<font color="#000000">ans =</font></pre>
                  <pre><font color="#000000">   -1.9099
    0.7358</font></pre>
                  </td>
                </tr>
              </table>
              <p>To simplify things even further, you can tell YALMIP to 
				dualize, solve the dual, and recover the primal variables, by 
				using the associated option.</p>
           <table cellpadding="10" width="100%" id="table3">
                <tr>
                  <td class="xmpcode">

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧洲色大大久久| 日韩理论片在线| 中文字幕一区二区5566日韩| 一区二区三区中文字幕| 另类专区欧美蜜桃臀第一页| 成人深夜视频在线观看| 欧美一级二级三级乱码| 亚洲黄色小视频| 高清不卡在线观看| 日韩一区二区麻豆国产| 最新不卡av在线| 国产福利一区二区| 日韩亚洲欧美中文三级| 亚洲线精品一区二区三区| 成人性生交大片免费看在线播放| 欧美丰满一区二区免费视频| 亚洲免费在线播放| 丁香天五香天堂综合| 日韩欧美第一区| 五月综合激情日本mⅴ| 91黄色免费观看| 亚洲欧洲三级电影| 大白屁股一区二区视频| 久久精品欧美日韩| 精品一区二区三区久久| 日韩欧美123| 免费人成黄页网站在线一区二区| 欧美日韩欧美一区二区| 一区二区成人在线| 在线精品视频免费播放| 亚洲色大成网站www久久九九| 成人性生交大合| 国产精品高潮久久久久无| 福利电影一区二区三区| 国产无一区二区| 成人网页在线观看| 久久久久青草大香线综合精品| 韩国女主播一区二区三区| 国产精品亲子乱子伦xxxx裸| 国产福利91精品一区二区三区| 久久蜜臀中文字幕| 国产成人综合在线| 国产精品久久久久久久久免费丝袜 | 国产成人高清视频| 久久精品视频在线免费观看| 国产乱码精品一区二区三区av | 日韩欧美国产1| 激情综合亚洲精品| 欧美激情资源网| 99在线热播精品免费| 亚洲精品免费在线| 88在线观看91蜜桃国自产| 蜜桃一区二区三区四区| 精品美女在线播放| 风间由美一区二区三区在线观看| 亚洲欧洲精品一区二区精品久久久 | 亚洲一区影音先锋| 555www色欧美视频| 九色综合狠狠综合久久| 国产日韩三级在线| 91福利视频久久久久| 美女网站色91| 国产精品久久久久久久久久久免费看| 99久久精品国产观看| 亚洲成人av一区| 久久一日本道色综合| 一本色道**综合亚洲精品蜜桃冫| 一区二区三区日韩欧美| 欧美va在线播放| 91丨九色porny丨蝌蚪| 日韩av在线发布| 日本一区二区三区免费乱视频| 在线观看亚洲精品| 狠狠色狠狠色综合系列| 亚洲综合久久av| www国产成人| 欧美午夜一区二区三区| 极品美女销魂一区二区三区免费| 亚洲精品成人a在线观看| 日韩一区二区三区在线| 成人av手机在线观看| 琪琪久久久久日韩精品| 最新欧美精品一区二区三区| 日韩一区二区在线观看视频| 91婷婷韩国欧美一区二区| 美女看a上一区| 亚洲午夜国产一区99re久久| 久久久亚洲午夜电影| 欧美另类z0zxhd电影| thepron国产精品| 国产自产高清不卡| 婷婷亚洲久悠悠色悠在线播放| 国产三级三级三级精品8ⅰ区| 欧美人与性动xxxx| 91亚洲国产成人精品一区二区三 | 亚洲综合免费观看高清完整版在线 | 久久久亚洲综合| 51精品秘密在线观看| 欧美亚洲国产bt| 99在线热播精品免费| 久88久久88久久久| 首页综合国产亚洲丝袜| 亚洲精品国产视频| 国产精品网站在线观看| 久久这里只有精品6| 日韩一区二区在线看片| 欧美日韩国产首页| 91久久精品网| 99re成人精品视频| www.成人在线| 99麻豆久久久国产精品免费优播| 国产又黄又大久久| 精久久久久久久久久久| 美日韩一区二区三区| 日韩1区2区3区| 日韩成人精品在线| 秋霞成人午夜伦在线观看| 婷婷激情综合网| 视频一区二区三区中文字幕| 亚洲国产精品久久久男人的天堂| 亚洲精品国产视频| 亚洲午夜三级在线| 日韩电影在线免费| 老司机精品视频线观看86 | 极品少妇xxxx精品少妇| 激情综合网av| 国产精品一色哟哟哟| 国产成人夜色高潮福利影视| 国产美女娇喘av呻吟久久| 高清在线观看日韩| 99国产精品视频免费观看| 91蝌蚪porny成人天涯| 在线免费不卡电影| 91精品国产欧美日韩| 精品欧美一区二区在线观看| 国产亚洲成av人在线观看导航 | 国产寡妇亲子伦一区二区| 国产成人aaa| 91美女蜜桃在线| 欧美肥妇毛茸茸| 亚洲精品一线二线三线| 国产精品理伦片| 亚洲国产日韩综合久久精品| 麻豆精品一区二区综合av| 国产麻豆一精品一av一免费| 99久久精品免费| 欧美日韩极品在线观看一区| 精品对白一区国产伦| 中文字幕一区二区三区四区不卡| 亚洲欧美视频在线观看| 日韩影院精彩在线| 国产成人啪免费观看软件| 在线亚洲高清视频| 久久久综合视频| 亚洲午夜久久久久久久久久久| 乱一区二区av| 色综合天天综合| 26uuu亚洲| 亚洲一区二区三区视频在线| 国产一区二区三区日韩| 欧美性videosxxxxx| 国产欧美精品一区二区三区四区| 一区二区三区欧美日韩| 精品视频免费看| 欧美激情资源网| 免费成人在线视频观看| 91免费国产在线| 久久精品视频网| 午夜国产不卡在线观看视频| 成人免费观看视频| 欧美高清www午色夜在线视频| 国产精品毛片大码女人| 久久精品av麻豆的观看方式| 欧美主播一区二区三区| 欧美韩国日本不卡| 麻豆91精品91久久久的内涵| 色中色一区二区| 国产精品视频免费| 黑人精品欧美一区二区蜜桃| 欧美系列亚洲系列| 亚洲裸体在线观看| 春色校园综合激情亚洲| 精品粉嫩超白一线天av| 日韩和的一区二区| 欧美日韩一区高清| 亚洲欧美日韩综合aⅴ视频| 国产91在线观看丝袜| 精品伦理精品一区| 丝袜亚洲精品中文字幕一区| 97久久精品人人爽人人爽蜜臀| 国产欧美视频在线观看| 久久66热偷产精品| 日韩色在线观看| 奇米色777欧美一区二区| 欧美色爱综合网| 亚洲一区二区免费视频| 91国偷自产一区二区开放时间| 国产精品九色蝌蚪自拍| 国产91丝袜在线18| 国产精品免费aⅴ片在线观看|