?? uart.c
字號:
keyBuf[keyBufWrPt++]=rURXH1;//rx buffer->keyBuf[]
if(keyBufWrPt==KEY_BUFLEN)
keyBufWrPt=1;
}
}
void __irq Uart1_RxFifoErrorInt(void)
{
rI_ISPC=BIT_UERR01;
switch(rUERSTAT1)//to clear and check the status of register bits
{
case '1':
Uart_Printf("Overrun error\n");
break;
case '2':
Uart_Printf("Parity error\n");
break;
case '4':
Uart_Printf("Frame error\n");
break;
case '8':
Uart_Printf("Breake detect\n");
break;
default :
break;
}
while( (rUFSTAT1&0xf) >0 )
{
keyBuf[keyBufWrPt++]=rURXH1;
if(keyBufWrPt==KEY_BUFLEN)
keyBufWrPt=0;
}
}
void Test_Uart1(void)
{
int key;
Uart_Port();
keyBufRdPt=keyBufWrPt=0;
pISR_UTXD1=(unsigned)Uart1_TxInt;
pISR_URXD1=(unsigned)Uart1_RxInt;
/*********** UART1 Tx test with interrupt ***********/
Uart_Printf("[Uart channel 1 tx Interrupt Test]\n");
Uart_Printf("Plug the serial cable into ch1 connector!!! \n");
Uart_Printf("Then, press any key through UART ch1.\n");
Uart_Select(1);
Uart_Getch();
uart1TxStr="UART1 Tx interrupt test is good!!!!\r\n";
rINTMSK=~(BIT_GLOBAL|BIT_UTXD1);
// rUCON1 &= 0x3f3;
// rUCON1 |= 0x4; //needed to set the UTXD0 pending bit.
rUCON1 = 0x244; //rx:edge,tx:level,error int,normal*2,interrupt(Start)
Delay(3000);
/*********** UART1 Tx test with BDMA1 ***********/
rUCON1 = 0x245;
Uart_Printf("\n[Uart1 Tx Test by BDMA1]\n");
uart1TxStr="UART1 Tx Test by BDMA1 is good!!!!\r\n";
Uart_TxEmpty(1);
rUCON1=0x4c; //tx:BDMA0 rx:disable
rBDICNT1=0x0;
rBDCON1 =0x0;
rBDISRC1=(unsigned int)uart1TxStr|(0<<30)|(1<<28); // byte,inc
rBDIDES1=UTXH1 |(1<<30)|(3<<28); //L/B endian,M2IO,fix
rBDICNT1=strlen((char *)uart1TxStr)|(2<<30)|(1<<26)|(0<<20); //UART1,
rBDICNT1 |= (1<<20); //enable
while(!((rBDCON1&0x30)==0x20));
Uart_TxEmpty(1);
/*********** UART1 Rx test with interrupt ***********/
rUCON1=0x45; //tx:int rx:int
Uart_Printf("\n[Uart channel 1 Rx Interrupt Test]:Type any key!!!\n");
Uart_Printf("You have to see the typed character. To quit, press Enter key.\n");
rINTMSK=~(BIT_GLOBAL|BIT_URXD1);
keyBufRdPt=keyBufWrPt=0;
while((key=Uart_IntGetkey())!='\r')
Uart_SendByte(key);
rINTMSK=~BIT_GLOBAL;
Uart_Printf("\n");
Uart_Printf("Plug the serial cable into ch0 as before this test!!!\n");
Uart_Printf("Then, press any key through UART ch 0.\n");
Uart_Select(0);
Uart_Getch();
Return_Port();
}
void __irq Uart1_RxInt(void)
{
rI_ISPC=BIT_URXD1;
keyBuf[keyBufWrPt++]=RdURXH1();
if(keyBufWrPt==KEY_BUFLEN)
keyBufWrPt=0;
}
void __irq Uart1_TxInt(void)
{
// rI_ISPC=BIT_UTXD1;
if(*uart1TxStr != '\0')
{
WrUTXH1(*uart1TxStr++);
rI_ISPC=BIT_UTXD1;
}
else
/* {
rUCON1 &= 0x3f3;//workaround for ES1, ES2
rI_ISPC=BIT_UTXD1;
rINTMSK|=BIT_UTXD1;
}*/
{ //ES3
rINTMSK |= BIT_UTXD1; //ES3
rI_ISPC=BIT_UTXD1; //ES3
} //ES3
}
////////Auto Flow Control TEST(Tx)////////////////
volatile unsigned char * volatile tx0,* tx1,*tx2,tx_end=0;
volatile int i;
volatile int tx_cnt=0;
void Test_UartAFC_Tx(void)
{
Uart_Port();
tx_cnt=0;
tx0=(unsigned char *)malloc(AFC_BUFLEN);
tx1=tx0;
tx2=tx0;
Uart_Printf("!!!tx0=0x%x\n",tx0);
for(i=0;i<AFC_BUFLEN;i++)
*tx1++=i;
pISR_UTXD1=(unsigned)U1AFC_TxInt;
// Led_Display(0xf); //LED off
Uart_Printf("[UART AFC Tx Test]\n");
Uart_Printf("This test should be configured two boards.\n");
Uart_Printf("Connect twitsted(rx/tx, nCTS/nRTS) cable com2 to other board's com1 port.\n");
Uart_Printf("Start Rx first and press any key and,.\n");
Uart_TxEmpty(0);
Uart_Getch();
rUCON1=(1<<9)|(0<<8)|(0<<7)|(0<<6)|(0<<5)|(0<<4)|(1<<2)|(1);
rUFCON1=0x0; //FIFO disable
rUMCON1=0x10; //Uart1 AFC enable
Uart_Printf("Now... Tx with AFC\n");
Uart_TxEmpty(0);
rINTMSK=~(BIT_GLOBAL|BIT_UTXD1);
while(!tx_end);
Led_Display(0x0); //LED on
Uart_Printf("\nEnd Tx, transfer data count=%d\n",tx_cnt);
Return_Port();
free((void *)tx0);
tx_end=0;
tx_cnt=0;
}
void __irq U1AFC_TxInt(void)
{
if(tx_cnt < (AFC_BUFLEN))
{
Uart_Printf("%d,",*tx2);
WrUTXH1(*tx2++);
rI_ISPC=BIT_UTXD1;
tx_cnt++;
}
else
{
Uart_TxEmpty(1);
/* rUCON1 &= 0x3f3;//workaround for ES1,2
rI_ISPC=BIT_UTXD1;
rINTMSK|=BIT_UTXD1;*/
rINTMSK |= BIT_UTXD0; //ES3
rI_ISPC=BIT_UTXD0; //ES3
tx_end=1;
}
}
////////Auto Flow Control TEST(Rx with FIFO)////////////////
volatile unsigned char *rx0,*rx1,*rx2,rx_end=0;
volatile int rx_cnt=0;
void Test_UartAFC_Rx(void)
{
unsigned int i;
unsigned int err_cnt=0;
Uart_Port();
Uart_Printf("[UART AFC Rx Test]\n");
Uart_Printf("This test should be configured two boards.\n");
Uart_Printf("Connect twisted(rx/tx, nCTS/nRTS) cable com1 to other board's com2 port.\n");
Uart_Printf("Then, change connected cable between host and com1, host to com2.\n");
Uart_Printf("Press any key to com2 and start Rx first.\n");
Uart_TxEmpty(0);
Uart_Select(1);
Uart_Getch();
rx0=(unsigned char *)malloc(AFC_BUFLEN);
rx1=rx0;
rx2=rx0;
pISR_URXD0=(unsigned)U0AFC_RxInt;
pISR_UERR01=(unsigned)U0AFC_RxErrorInt;
Led_Display(0xf); //LED off
rUMCON0=0x10; //Uart0 AFC enable
rUCON0=(1<<9)|(0<<8)|(1<<7)|(1<<6)|(0<<5)|(0<<4)|(1<<2)|(1);
rUFCON0=(2<<6)|(1<<4)|(1<<2)|(1<<1)|(1);
Uart_Printf("Now... Rx with AFC\n");
Uart_TxEmpty(1);
rINTMSK=~(BIT_GLOBAL|BIT_URXD0|BIT_UERR01);
while(!rx_end);
Delay(1000);
rINTMSK=BIT_GLOBAL;
Uart_Printf("\nEnd Rx, receive data count=%d\n",rx_cnt);
Led_Display(0x0); //LED on
Uart_Printf("Now, change connected cable between host and com2, host to com1.\n");
Uart_Printf("Then, press any key.\n");
Uart_Init(0,115200);
Uart_Select(0);
Uart_Getch();
for(i=0;i<AFC_BUFLEN;i++)
{
if(i-(*rx1++))
{
Uart_Printf("i=%d\n",i);
err_cnt++;
}
}
if(err_cnt)
Uart_Printf("AFC test fail!! Error count=%d\n",err_cnt);
else
Uart_Printf("AFC test is good!!\n");
Return_Port();
free((void *)rx0);
rx_end=0;
rx_cnt=0;
}
void __irq U0AFC_RxInt(void)
{
rI_ISPC=BIT_URXD0;
while( (rUFSTAT0 & 0x100) || ((rUFSTAT0 & 0xf) >0) )
{
Delay(1000);
*rx2++=rURXH0;
Uart_Printf("%d,",*(rx2-1));
rx_cnt++;
}
if(rx_cnt == (AFC_BUFLEN))
rx_end=1;
}
void __irq U0AFC_RxErrorInt(void)
{
rI_ISPC=BIT_UERR01;
switch(rUERSTAT0)//to clear and check the status of register bits
{
case 1:
WrUTXH1('!');
break;
case 2:
WrUTXH1('#');
break;
case 4:
WrUTXH1('$');
break;
case 8:
WrUTXH1('@');
break;
default :
WrUTXH1('*');
break;
}
}
char _done=0, error=0;
void Test_BDMA(void)
{
char *_buf,i;
char *_temp2;
int *_temp;
_buf=(char *)malloc(100);
_temp=(int *)malloc(1);
_temp2=_buf;
rINTMSK=~(BIT_GLOBAL|BIT_BDMA0|BIT_UERR01);
pISR_BDMA0=(unsigned)Test_Done;
pISR_UERR01=(unsigned)Error;
Uart_Init(0,115200);
Uart_Printf("[Read BDCON0 register in Rxing...]\n");
Uart_TxEmpty(0);
rBDISRC0=(0<<30)+(3<<28)+(int)URXH0; //byte,inc,Rx-buf
rBDIDES0=(2<<30)+(1<<28)+(int)_buf; //M2IO,fix,IISFIF
rBDICNT0=(2<<30)+(1<<26)+(3<<22)+(1<<21)+(0<<20)+700;
//Uart0,reserve,done_int,auto-reload/start,DMA disable,COUNT
rBDICNT0 |= (1<<20);//enable
rBDCON0 = 0x0<<2;
rUCON0=0x2c6; //tx:polling rx:BDMA0
while(!_done)
{
*_temp=rBDCON0;
if((rBDCON0 & 0xf))
{
Uart_Printf("!!Error0x%x!!,",rBDCON0);
break;
}
}
Uart_Printf("!END!\n");
if(error)
Uart_Printf("[rUERSTAT=0x%x]\n",rUERSTAT0);
rINTMSK=BIT_GLOBAL;
// rUCON0 &= 0x3fd;//Rx disable
rBDICNT0=0x0; //BDMA stop
for(i=0;i<10;i++)
Uart_Printf("%d=0x%x,",i,*_temp2++);
Uart_Printf("\n0x%x,",*_temp);
free(_buf);
_done=0;
}
void __irq Test_Done(void)
{
rI_ISPC=BIT_BDMA0; //clear pending bit
_done=1;
}
void __irq Error(void)
{
rI_ISPC=BIT_UERR01;
error=1;
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -