亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? qcamie.m

?? The EM Wave MATLAB Library consists of a collection of MATLAB programs related to electromagnetic wa
?? M
字號:
function K_eff=qcamie(freq,epsilon_p,f,k0a,n_max)
%QCAMIE computes the effective propagation constant using the quasi-crystalline %approximation (QCA) for a medium consisting of densely distributed Mie
%scatterers.
%
%    K_eff=qcamie(freq,epsilon_p,f,nmax,ka)
%
%    INPUT:
%
%    freq=frequency in GHz	
%    epsilon_p=particle permittivity relative to homogeneous background
%    f=fractional volume of particles
%    k0a=size parameter (this can be a vector)
%    n_max=maximum spherical multipole used
%
%    OUTPUT:
%
%    K_eff=complex number (per cm) which denote the effective propagation 
%          constant at each k0a
%
% -- Part of the Electromagnetic Wave MATLAB Library (EWML)--
%    <http://www.emwave.com/>

% Original: by Chite Chen, November 1998

tol=1e-14;                         % error tolerance of det(T)
lambda=30/freq;                    % wavelength in cm
k=2*pi/lambda;	                 % wavenumber in 1/cm
na=max(size(k0a));

% Read pair function for given f for the integration limit of Mp
load pair.dat;
r_b=pair(:,1);
gg=pair(:,2);

for ia=1:na,
  ka=k0a(ia);
  a=ka/k;
  b=2*a;
  kpa=ka*sqrt(epsilon_p);
  no=6*f/(pi*b^3);

% First initial guess is the solution for media with sparse concentration
% the exciting field approximately the same as the incident field
  FF=0;
  for nn=1:n_max,
    FF=FF+(2*nn+1)*(Tn_M(nn,ka,kpa)+Tn_N(nn,ka,kpa));
  end
  K_F=k-i*pi*no/k^2*FF;

% Second initial guess is the low frequency limit solution
% For Percus-Yevick pair function
  y=(epsilon_p-1)/(epsilon_p+2);
  K_low=sqrt(k^2+3*f*k^2*y/(1-f*y)*(1+i*2/3*(ka)^3*y*(1-f)^4/((1-f*y)*(1+2*f)^2)));

% Third initial guess
  K_low_real=real(K_low);

  r=r_b*b;                          % resize r;

  x1=K_F;
  x2=real(K_low);
  x3=K_low;
  T1=SysEqu(n_max,k,x1,ka,kpa,b,no,r,gg);
  T2=SysEqu(n_max,k,x2,ka,kpa,b,no,r,gg);
  T3=SysEqu(n_max,k,x3,ka,kpa,b,no,r,gg);
  f1=det(T1);
  f2=det(T2);
  f3=det(T3);

% Rearrange the order so that abs(f(i))<= abs(f(i-1)) <= abs(f(i-2))
  [x1 x2 x3 f1 f2 f3]=Rearrange(x1,x2,x3,f1,f2,f3);
  if abs(f3)<tol,
    K_eff(ia)=x3;
  else
% Using Muller's Approach to calculate the new guesses
    n_iter=0;                       % number of iteration
    while (abs(f3)>tol)&(n_iter<=30),
      x_new=Muller(x1,x2,x3,f1,f2,f3);
      x1=x2;
      x2=x3;
      x3=x_new;
      T1=T2;
      T2=T3;
      T3=SysEqu(n_max,k,x3,ka,kpa,b,no,r,gg);
      f1=f2;
      f2=f3;
      f3=det(T3);
      [x1 x2 x3 f1 f2 f3]=Rearrange(x1,x2,x3,f1,f2,f3);
      n_iter=n_iter+1;
    end
    K_eff(ia)=x3;
  end
  K_eff
end

figure(1)
plot(k0a,k./real(K_eff));
grid on;
axis([0 2.5 0.8 1])
xlabel('ka')
ylabel('Phase Velocity')
title('Normalized phase velocity k/K_r as function of ka')
%
figure(2)
semilogy(k0a,2*imag(K_eff)./real(K_eff));
grid on;
axis([0 2.5 1e-4 1])
xlabel('ka')
ylabel('Loss Tangent')
title('Effective loss tangent 2K_i/K_r as function of ka')


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                              Tn_M.m                                %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Tn_M(n,ka,kpa)
% compute T-matrix elements for vector spherical waves M_mn

numerator1=sbesselj(n,kpa).*(sbesselj(n,ka)+ka*sbesselj_p(n,ka));
numerator2=sbesselj(n,ka).*(sbesselj(n,kpa)+kpa*sbesselj_p(n,kpa));
denominator1=sbesselj(n,kpa).*(sbesselh(n,ka)+ka*sbesselh_p(n,ka));
denominator2=sbesselh(n,ka).*(sbesselj(n,kpa)+kpa*sbesselj_p(n,kpa));
output=-(numerator1-numerator2)./(denominator1-denominator2);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                              Tn_N.m                                %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Tn_N(n,ka,kpa)
% compute T-matrix elements for vector spherical waves N_mn

numerator1=(kpa)^2*sbesselj(n,kpa).*(sbesselj(n,ka)+ka*sbesselj_p(n,ka));
numerator2=(ka)^2*sbesselj(n,ka).*(sbesselj(n,kpa)+kpa*sbesselj_p(n,kpa));
denominator1=(kpa)^2*sbesselj(n,kpa).*(sbesselh(n,ka)+ka*sbesselh_p(n,ka));
denominator2=(ka)^2*sbesselh(n,ka).*(sbesselj(n,kpa)+kpa*sbesselj_p(n,kpa));
output=-(numerator1-numerator2)./(denominator1-denominator2);


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             Clebsch.m                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Clebsch(j1,j2,j3,m1,m2,m)
% calculate Clebsch-Gordan coefficients using the formula in
% Abramowitz and Stegun

FF=0;
if (j1 < abs(m1)) | (j2 < abs(m2)) | (j3 < abs(m)),
  output=0;
% sprintf('Condition (j1>=|m1|, j2 >=|m2| and j >=|m|) does NOT obey')
  break
elseif ((j3 > j1+j2) | j3 < abs(j1-j2)),
  output=0;
% sprintf('Condition ( |j1-j2|<=j<=j1+j2 ) does NOT obey')
  break
end

if (m1+m2)~= m,
  output=0;
else
  term1=1/2*(faclog(j1+j2-j3)+faclog(j3+j1-j2)+faclog(j3+j2-j1) ...
       +log(2*j3+1)-faclog(j3+j1+j2+1)+faclog(j1+m1)+faclog(j1-m1) ...
       +faclog(j2+m2)+faclog(j2-m2)+faclog(j3+m)+faclog(j3-m));
% term1 includes the terms which are not related to k
% determine the range for k - the factorial cannot be negative
  upperlimit=min([j1+j2-j3 j1-m1 j2+m2]);
  lowerlimit=abs(min([j3-j2+m1 j3-j1-m2 0]));
  for k=lowerlimit:upperlimit,
    term2=-(faclog(k)+faclog(j1+j2-j3-k)+faclog(j1-m1-k) ...
         +faclog(j2+m2-k)+faclog(j3-j2+m1+k)+faclog(j3-j1-m2+k));
    FF=FF+(-1)^k*exp(term2);
  end
  output=FF*exp(term1);
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             wigner.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=wigner(j1,j2,j3,m1,m2,m)
% calculate Wigner 3-j symbol

output=(-1)^(j1-j2-m)*(2*j3+1)^(-1/2)*Clebsch(j1,j2,j3,m1,m2,-m);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                            factorial.m                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=factorial(n)
% compute the factorial of n

product=1;
if n==0,
  output=1;
elseif (n < 0),
  sprintf('n cannot be negative')
  break
else
  for n_index=1:n,
    product=n_index*product;
  end
  output=product;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             faclog.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=faclog(n)
% natural logarithm of factorial n (log(n!)) preventing overflow

nn=0;
if (n==0),
  output=0;                         % log(1) = 0;
elseif (n<0),
  sprintf('n cannot be negative')
  break
else
  for n_index=1:n,
     nn=nn+log(n_index);
  end
  output=nn;
end


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                            sbesselj.m                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=sbesselj(n,arg)
% spherical Bessel function of order n
% allow arguement to be an array, but only allow a single order n

output=sqrt(pi./(2*arg)).*besselj(n+1/2,arg);

% special handle for arguement = 0
[xx]=find (arg==0);
if (n==0),
  output([xx])=1;
else
  output([xx])=0;
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                           sbesselj_p.m                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=sbesselj_p(n,arg)
% derivative of spherical Bessel function of order n

output=1/(2*n+1)*(n*sbesselj(n-1,arg)-(n+1)*sbesselj(n+1,arg));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                            sbesselh.m                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=sbesselh(n,arg)
% spherical Hankel function of the first kind of order n
% allow arguement to be an array
% singular at arguement = 0

output = sqrt(pi./(2*arg)).*besselh(n+1/2,1,arg);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                           sbesselh_p.m                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=sbesselh_p(n,arg)
% derivative of spherical Hankel function of order n

output=1/(2*n+1)*(n*sbesselh(n-1,arg)-(n+1)*sbesselh(n+1,arg));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             a_mnuvp.m                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=a_mnuvp(m,n,u,v,p)
% coefficient a(

output=(-1)^(m+u)*(2*p+1)*sqrt((factorial(n+m)*factorial(v+u)*factorial(p-m-u)) ...
      /(factorial(n-m)*factorial(v-u)*factorial(p+m+u)))*wigner(n,v,p,m,u,-(m+u)) ...
      *wigner(n,v,p,0,0,0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                            a_mnuvpq.m                              %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=a_mnuvpq(m,n,u,v,p,q)
% coefficient a(

output=(-1)^(m+u)*(2*p+1)*sqrt((factorial(n+m)*factorial(v+u)*factorial(p-m-u)) ...
      /(factorial(n-m)*factorial(v-u)*factorial(p+m+u)))*wigner(n,v,p,m,u,-(m+u)) ...
      *wigner(n,v,q,0,0,0);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                              A_nvp.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=A_nvp(n,v,p)
% coefficient A(

output=1/(n*(n+1)*(2*v+1))*(2*v*(v+1)*(2*v+1)+(v+1)*(n+v-p)*(n+p-v+1) ...
      -v*(n+v+p+2)*(v+p-n+1));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                              B_nvp.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=B_nvp(n,v,p)
% coefficient B(

output=1/(n*(n+1))*sqrt((n+v+p+1)*(v+p-n)*(n+p-v)*(n+v-p+1));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                               Lp.m                                 %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Lp(p,k,Keff,b)
% coefficient L

output=-b^2/(Keff^2-k^2)*(k*sbesselh_p(p,k*b)*sbesselj(p,Keff*b) ...
      -Keff*sbesselh(p,k*b)*sbesselj_p(p,Keff*b));

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                               Mp2.m                                %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Mp2(p,k,Keff,r,gg,b)
% Pair function is independent of p
% exclude those for r less than b
% find the cutoff point

nr=max(size(r));
r_cutoff=min(find(r>=b));
r=r(r_cutoff:nr);
gg=gg(r_cutoff:nr);
h=gg-1;
hp=sbesselh(p,k*r);
jp=sbesselj(p,Keff*r);
yy=r.^2.*h.*hp.*jp;
output=trapz(r,yy);

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             Muller.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=Muller(x1,x2,x3,f1,f2,f3)
% Muller's approach

lambda_i=(x3-x2)/(x2-x1);
delta_i=1+lambda_i;
c_i=f1*lambda_i^2-f2*delta_i^2+f3*(lambda_i+delta_i);
den1=c_i+sqrt(c_i^2-4*f3*delta_i*lambda_i*(f1*lambda_i-f2*delta_i+f3));
den2=c_i-sqrt(c_i^2-4*f3*delta_i*lambda_i*(f1*lambda_i-f2*delta_i+f3));
if abs(den1)>=abs(den2),
  denominator=den1;
else
  denominator=den2;
end
output=x3+(x3-x2)*(-2*f3*delta_i)/denominator;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                             SysEqu.m                               %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [output]=SysEqu(n_max,k,Keff,ka,kpa,b,no,r,gg)
% calculate Mp+Lp and store as an array.
% abs(n-v) <=p <=(n+v)
% the upper bound and lower bound are 0 and 2*n_max

for v=1:n_max,
  for n=1:n_max,
    FF1=0;
    FF2=0;
    for p=abs(n-v):(n+v);
      MLSUM=Lp(p,k,Keff,b)+Mp2(p,k,Keff,r,gg,b);
      aA=a_mnuvp(1,n,-1,v,p)*A_nvp(n,v,p);
      aB=a_mnuvpq(1,n,-1,v,p,p-1)*B_nvp(n,v,p);
      FF1=FF1+MLSUM*aA;
      FF2=FF2+MLSUM*aB;
    end
    MM(v,n)=-2*pi*no*(2*n+1)*Tn_M(n,ka,kpa)*FF1;
    MN(v,n)=-2*pi*no*(2*n+1)*Tn_N(n,ka,kpa)*FF2;
    NM(v,n)=-2*pi*no*(2*n+1)*Tn_M(n,ka,kpa)*FF2;
    NN(v,n)=-2*pi*no*(2*n+1)*Tn_N(n,ka,kpa)*FF1;
  end
end
TT=[MM MN; NM NN];
output=eye(2*n_max)-TT;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                            Rearrange.m                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [x1,x2,x3,f1,f2,f3]=Rearrange(x1,x2,x3,f1,f2,f3)
% random input order, rearrange the order so that f1 >= f2 >= f3

if (abs(f1)<abs(f2)),
  tmp=f2;
  tmpX=x2;
  f2=f1;
  x2=x1;
  f1=tmp;
  x1=tmpX;              % if (f1<f2) interchange f1 and f2 so f1 >= f2
end

if (abs(f2)<abs(f3)),
  tmp=f3;
  tmpX=x3;
  f3=f2;
  x3=x2;
  f2=tmp;
  x2=tmpX;
end

if (abs(f1)<abs(f2)),
  tmp=f2;
  tmpX=x2;
  f2=f1;
  x2=x1;
  f1=tmp;
  x1=tmpX;
end
output=[x1 x2 x3 f1 f2 f3];

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
色琪琪一区二区三区亚洲区| 一区2区3区在线看| 欧美揉bbbbb揉bbbbb| 99久久精品国产精品久久| 国产精品99久久久久久似苏梦涵| 日本美女视频一区二区| 亚洲成av人片一区二区三区| 尤物视频一区二区| 亚洲亚洲精品在线观看| 亚洲自拍偷拍九九九| 亚洲第一二三四区| 五月天亚洲精品| 免费观看30秒视频久久| 秋霞成人午夜伦在线观看| 日本不卡的三区四区五区| 奇米四色…亚洲| 麻豆精品一区二区av白丝在线| 免费成人av在线播放| 麻豆高清免费国产一区| 国产伦精品一区二区三区免费迷| 国产一区二区三区电影在线观看| 国产激情视频一区二区三区欧美 | 91黄色小视频| 欧美日韩国产乱码电影| 9191成人精品久久| 日韩久久免费av| 精品成人佐山爱一区二区| 国产人妖乱国产精品人妖| 亚洲欧美综合另类在线卡通| 亚洲小说春色综合另类电影| 麻豆91精品视频| 成人高清av在线| 精品视频1区2区| 国产欧美一二三区| 一区二区三区高清在线| 久久av老司机精品网站导航| 成人小视频在线| 91精品国产综合久久精品| 国产色一区二区| 日韩精品一级中文字幕精品视频免费观看 | 在线免费一区三区| 欧美日韩久久久一区| 精品国产污污免费网站入口| 亚洲人成电影网站色mp4| 视频一区国产视频| 99久免费精品视频在线观看| 91精品国产综合久久国产大片| 久久久亚洲精品一区二区三区| 一区二区久久久久久| 国产精品亚洲综合一区在线观看| 欧美性做爰猛烈叫床潮| 中文字幕免费不卡在线| 免费欧美在线视频| 欧日韩精品视频| 国产精品理论片在线观看| 麻豆精品在线播放| 欧美日韩国产欧美日美国产精品| 1000部国产精品成人观看| 韩国av一区二区三区| 91精品国产综合久久福利| 亚洲人亚洲人成电影网站色| 国产剧情一区二区三区| 欧美一区二区三区四区久久| 一区二区三区在线视频免费 | 亚洲国产婷婷综合在线精品| 国产精品18久久久久久久久久久久| 欧美日韩在线三区| 一区二区在线观看视频| 99久久婷婷国产综合精品电影| 久久婷婷国产综合国色天香| 日本亚洲免费观看| 欧美日韩一本到| 一区二区三区四区在线播放| 成人黄色片在线观看| 国产三级一区二区| 国产成人亚洲综合a∨婷婷| 日韩欧美国产系列| 蜜臀久久99精品久久久久久9 | 91在线观看免费视频| 国产精品全国免费观看高清 | 亚洲国产成人在线| 国产成人综合自拍| 欧美国产一区二区| 成人激情小说乱人伦| 中文字幕一区二区三区不卡在线| 国产精品996| 国产欧美日韩亚州综合 | 亚洲一区二区三区爽爽爽爽爽| a级高清视频欧美日韩| 亚洲欧美中日韩| 91成人免费在线| 亚洲成av人**亚洲成av**| 欧美日韩国产123区| 天天影视涩香欲综合网 | 精品美女一区二区三区| 国产一区二区三区免费看| 国产区在线观看成人精品 | 国产精品国产精品国产专区不蜜| 成人av网站在线观看免费| 亚洲色图欧洲色图婷婷| 欧美日韩在线一区二区| 久久国产精品99久久久久久老狼 | 夜夜爽夜夜爽精品视频| 91福利视频久久久久| 日本一道高清亚洲日美韩| 久久久亚洲综合| 欧亚洲嫩模精品一区三区| 国产在线精品一区二区三区不卡| 国产精品久久毛片av大全日韩| 色域天天综合网| 久久国产福利国产秒拍| 国产精品嫩草影院av蜜臀| 欧美日韩国产123区| 国产麻豆欧美日韩一区| 亚洲国产婷婷综合在线精品| 国产亚洲综合在线| 欧美日韩在线一区二区| 成人精品一区二区三区中文字幕| 亚洲一区二区三区四区中文字幕| 精品国产乱码久久久久久图片 | 欧美精品久久久久久久多人混战| 国产精品自在在线| 亚洲一级不卡视频| 欧美激情综合网| 欧美精品三级在线观看| 99视频国产精品| 精品在线观看视频| 午夜影院在线观看欧美| 国产精品色婷婷| 日韩亚洲国产中文字幕欧美| voyeur盗摄精品| 国产福利电影一区二区三区| 首页亚洲欧美制服丝腿| 亚洲摸摸操操av| 国产欧美一区二区精品秋霞影院| 欧美一级精品在线| 欧洲av在线精品| 色屁屁一区二区| 91亚洲精华国产精华精华液| 国产主播一区二区| 久久精品国产免费| 五月激情丁香一区二区三区| 亚洲欧美日韩综合aⅴ视频| 国产亚洲自拍一区| 精品国产露脸精彩对白| 日韩一区二区免费在线电影| 在线亚洲一区观看| 色av成人天堂桃色av| 99国产精品久久久久久久久久久| 国产成人午夜视频| 精品一区二区在线免费观看| 日本伊人色综合网| 毛片av一区二区| 久久99在线观看| 激情综合色播五月| 韩国精品免费视频| 国内精品国产成人国产三级粉色| 免费高清在线视频一区·| 麻豆久久久久久| 国产精品一级二级三级| 成人黄色在线视频| 色美美综合视频| 欧美性大战久久久久久久| 欧美日韩三级在线| 91麻豆精品国产91久久久久久| 欧美视频一区在线| 日韩一级二级三级精品视频| 日韩欧美国产一区二区在线播放| 精品精品国产高清一毛片一天堂| 亚洲精品一区在线观看| 欧美激情一二三区| 亚洲毛片av在线| 日本在线观看不卡视频| 韩日av一区二区| 色综合天天天天做夜夜夜夜做| 欧洲在线/亚洲| 日韩亚洲欧美综合| 亚洲欧美在线观看| 性做久久久久久久久| 黄色小说综合网站| av亚洲产国偷v产偷v自拍| 欧美自拍丝袜亚洲| 欧美www视频| 中文字幕中文字幕一区| 亚洲成人激情自拍| 国产精品性做久久久久久| 91香蕉视频mp4| 欧美xxxxx牲另类人与| 亚洲男人的天堂av| 国模大尺度一区二区三区| 91丨porny丨国产入口| 日韩一区二区三区视频在线观看| 国产精品久久久久久久久快鸭| 亚洲香肠在线观看| 国产成人日日夜夜| 欧美高清视频一二三区 | 色综合天天狠狠| 久久色.com| 午夜视频一区二区| av电影在线观看一区|