?? type_gknn.html
字號:
<html><head><title>Generated Documentation</title></head><body> <image src="headerimage.png"> <br><br><table><tr><td><big><big><big style="font-family: arial;"><b>GKNN</b></big></big></big><br>extends <a href="type_GSupervisedLearner.html">GSupervisedLearner</a><br></td><td> Implements the K-Nearest Neighbor learning algorithm</td></tr></table><br><br><big><big><i>Constructors (public)</i></big></big><br><div style="margin-left: 40px;"><big><b>GKNN</b></big>(<a href="type_GArffRelation.html">GArffRelation</a>* pRelation, int nNeighbors, bool bCopyInstances)<br><div style="margin-left: 80px;"><font color=brown> If bCopyInstances is true, it will make a copy of every instance that you add. If bCopyInstances is false, it will just use a reference to the vector you pass in. That vector must remain valid for the duration of this instance, and you are responsible to delete it. Also, it won't scale the vectors.</font></div><br></div><br><big><big><i>Destructors</i></big></big><br><div style="margin-left: 40px;"><big><b>~GKNN</b></big>()<br></div><br><big><big><i>Virtual (public)</i></big></big><br><div style="margin-left: 40px;">void <big><b>Eval</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Deduce the output values from the input values</font></div><br>void <big><b>Reset</b></big>()<br><div style="margin-left: 80px;"><font color=brown> Discard any training (but not any settings) so it can be trained again</font></div><br>void <big><b>Train</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Train with all the points in pData</font></div><br></div><br><big><big><i>Public</i></big></big><br><div style="margin-left: 40px;">void <big><b>AddVector</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Makes a copy of the vector and adds it to the internal set.</font></div><br>void <big><b>AddVectorAndDeleteNeighborIfClose</b></big>(double* pVector, double dCloseDistance)<br><div style="margin-left: 80px;"><font color=brown> Makes a copy of the vector and adds it to the internal set. Also, if the closest neighbor of that vector is less than dCloseDistance from it, that neighbor is deleted from the internal set.</font></div><br>void <big><b>ComputeScaleFactors</b></big>(<a href="type_GArffData.html">GArffData</a>* pData)<br><div style="margin-left: 80px;"><font color=brown> Compute the amount to scale each dimension so that all dimensions have equal weight</font></div><br>void <big><b>SetInterpolationLearner</b></big>(<a href="type_GSupervisedLearner.html">GSupervisedLearner</a>* pLearner, bool bTakeOwnership)<br><div style="margin-left: 80px;"><font color=brown> Sets the interpolation method to "Learner" and sets the learner to use. If bTakeOwnership is true, it will delete the learner when this object is deleted.</font></div><br>void <big><b>SetInterpolationMethod</b></big>(InterpolationMethod eMethod)<br><div style="margin-left: 80px;"><font color=brown> Sets the technique for interpolation. (If you want to use the "Learner" method, you should call SetInterpolationLearner instead of this method.)</font></div><br></div><br><big><big><i>Protected</i></big></big><br><div style="margin-left: 40px;">void <big><b>FindNeighbors</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Finds the nearest neighbors of pVector</font></div><br>void <big><b>InterpolateLearner</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Interpolates with the provided supervised learning algorithm</font></div><br>void <big><b>InterpolateLinear</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Interpolate with each neighbor having a linear vote. (Actually it's linear with respect to the squared distance instead of the distance, because this is faster to compute.)</font></div><br>void <big><b>InterpolateMean</b></big>(double* pVector)<br><div style="margin-left: 80px;"><font color=brown> Interpolate with each neighbor having equal vote</font></div><br></div><br></body></html>
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -