亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? analysis of data mining algorithms.htm

?? Web數據挖掘ID3算法源碼,使用C++語言編寫而成
?? HTM
字號:
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<!-- saved from url=(0057)http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm -->
<HTML><HEAD><TITLE>Analysis of Data Mining Algorithms</TITLE>
<META http-equiv=Content-Type content="text/html; charset=iso-8859-1">
<META content="MSHTML 6.00.2800.1106" name=GENERATOR></HEAD>
<BODY>
<CENTER><FONT size=+2>Analysis of Data Mining Algorithms</FONT></CENTER>
<CENTER>by</CENTER>
<CENTER>Karuna Pande Joshi</CENTER><PRE>&nbsp;Copyright Karuna Pande Joshi 1997.</PRE>
<HR>

<P><B><FONT size=+1>Table of Contents</FONT></B> 
<OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Introduction">Introduction</A> 

  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#class_algo">Classification 
  Algorithms</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#data_class_mtd">Data 
    Classification Methods</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#data_abst">Data 
    Abstraction</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#class_rule_learn">Classification-rule 
    learning.</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#ID3 algorithm">ID3 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#c4.5_algo">C4.5 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#sliq_algo">SLIQ 
      algorithm</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#other_algos">Other 
      Algorithms</A> </LI></OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#parallel_algos">Parallel 
    Algorithms</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#basic_idea">Basic 
      Idea</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#synch_tree">Synchronous 
      Tree Construction Approach</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#partition_tree">Partitioned 
      Tree Construction Approach</A> </LI></OL></LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#assoc_rules">Association 
  Rule Algorithms</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#apriori">Apriori 
    Algorithm</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#dist_parallel">Distributed/Parallel 
    Algorithms</A> </LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#seq_analysis">Sequential 
  Analysis</A> 
  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#seq_patterns">Sequential 
    Patterns</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#algo_seq_pattern">Algorithms 
    for Finding Sequential Patterns</A> 
    <OL>
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#algorithm">Algorithm</A> 

      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#aprioriall">Algorithm 
      AprioriAll</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#apriorisome">Algorithm 
      AprioriSome</A> 
      <LI><A 
      href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#relative_perform">Relative 
      Performance of the two Algorithms</A> </LI></OL></LI></OL>
  <LI><A 
  href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Conclusion">Conclusion</A> 

  <OL>
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#compare_algos">Comparing 
    Algorithms</A> 
    <LI><A 
    href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Drawbacks">Drawbacks 
    of Existing Algorithms</A> </LI></OL></LI></OL><A 
href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#References">REFERENCES</A> 
<BR><A 
href="http://userpages.umbc.edu/~kjoshi1/data-mine/proj_rpt.htm#Appendix">APPENDIX 
A : URL Listing</A> 
<P>
<HR width="100%">

<CENTER><A name=Introduction></A><B><U><FONT color=#000000><FONT 
size=+2>Introduction</FONT></FONT></U></B></CENTER>
<P>With an enormous amount of data stored in databases and data warehouses, it 
is increasingly important to develop powerful tools for analysis of such data 
and mining interesting knowledge from it. Data mining is a process of inferring 
knowledge from such huge data. Data Mining has three major components Clustering 
or <I>Classification</I>, <I>Association Rules</I> and <I>Sequence Analysis</I>. 

<P>By simple definition, in classification/clustering we analyze a set of data 
and generate a set of grouping rules which can be used to classify future data. 
For example, one may classify diseases and provide the symptoms which describe 
each class or subclass. This has much in common with traditional work in 
statistics and machine learning. However, there are important new issues which 
arise because of the sheer size of the data. One of the important problem in 
data mining is the Classification-rule learning which involves finding rules 
that partition given data into predefined classes. In the data mining domain 
where millions of records and a large number of attributes are involved, the 
execution time of existing algorithms can become prohibitive, particularly in 
interactive applications. This is discussed in detail in <I>Chapter 2</I>. 
<P>An association rule is a rule which implies certain association relationships 
among a set of objects in a database. In this<I> </I>process we discover a set 
of association rules at multiple levels of abstraction from the relevant set(s) 
of data in a database. For example, one may discover a set of symptoms often 
occurring together with certain kinds of diseases and further study the reasons 
behind them. Since finding interesting association rules in databases may 
disclose some useful patterns for decision support, selective marketing, 
financial forecast, medical diagnosis, and many other applications, it has 
attracted a lot of attention in recent data mining research . Mining association 
rules may require iterative scanning of large transaction or relational 
databases which is quite costly in processing. Therefore, efficient mining of 
association rules in transaction and/or relational databases has been studied 
substantially. This is discussed in detail in <I>Chapter 3</I>. 
<P>In <I>sequential Analysis</I>, we seek to discover patterns that occur in 
sequence. This deals with data that appear in separate transactions (as opposed 
to data that appear in the same transaction in the case of association).For e.g. 
: If a shopper buys item A in the first week of the month, then s/he buys item B 
in the second week etc. This is discussed in detail in <I>Chapter 4</I>. 
<P>There are many algorithms proposed that try to address the above aspects of 
data mining. Compiling a list of all algorithms suggested/used for these 
problems is an arduous task . I have thus limited the focus of this report to 
list only some of the algorithms that have had better success than the others. I 
have included a list of URLs in Appendix A which can be referred to for more 
information on data mining algorithms. 
<P>
<HR>

<HR>

<CENTER><A name=class_algo></A><B><U><FONT size=+2>Classification 
Algorithms</FONT></U></B></CENTER>
<P>In Data classification one develops a description or model for each class in 
a database, based on the features present in a set of class-labeled training 
data. There have been many data classification methods studied, including 
decision-tree methods, such as C4.5, statistical methods, neural networks, rough 
sets, database-oriented methods etc. 
<P><A name=data_class_mtd></A><FONT size=+1>Data Classification Methods</FONT> 
<P>In this paper, I have discussed in detail some of the <I>machine-learning</I> 
algorithms that have been successfully applied in the initial stages of this 
field. The other methods listed above are just being applied to data mining and 
have not been very successful. This section briefly describes these other 
methods. Appendix A lists the URLs which can be referred to for more information 
on these various methods. 
<UL>
  <LI><B>Statistical Algorithms</B> Statistical analysis systems such as SAS and 
  SPSS have been used by analysts to detect unusual patterns and explain 
  patterns using statistical models such as linear models. Such systems have 
  their place and will continue to be used. 
  <LI><B>Neural Networks </B>Artificial neural networks mimic the 
  pattern-finding capacity of the human brain and hence some researchers have 
  suggested applying Neural Network algorithms to pattern-mapping. Neural 
  networks have been applied successfully in a few applications that involve 
  classification. 
  <LI><B>Genetic algorithms</B> Optimization techniques that use processes such 
  as genetic combination, mutation, and natural selection in a design based on 
  the concepts of natural evolution. 
  <LI><B>Nearest neighbor method </B>A technique that classifies each record in 
  a dataset based on a combination of the classes of the k record(s) most 
  similar to it in a historical dataset. Sometimes called the k-nearest neighbor 
  technique. 
  <LI><B>Rule induction</B> The extraction of useful <I>if-then</I> rules from 
  data based on statistical significance. 
  <LI><B>Data visualization</B> The visual interpretation of complex 
  relationships in multidimensional data. </LI></UL><A name=data_abst></A><FONT 
size=+1>Data Abstraction</FONT> 
<P>Many existing algorithms suggest abstracting the test data before classifying 
it into various classes. There are several alternatives for doing abstraction 
before classification: A data set can be generalized to either a minimally 
generalized abstraction level, an intermediate abstraction level, or a rather 
high abstraction level. Too low an abstraction level may result in scattered 
classes, bushy classification trees, and difficulty at concise semantic 
interpretation; whereas too high a level may result in the loss of 
classification accuracy. The generalization-based multi-level classification 
process has been implemented in the DB-Miner system.[4] <BR>&nbsp; 
<P><A name=class_rule_learn></A><FONT size=+1>Classification-rule 
learning</FONT><FONT size=+1></FONT> 
<P>Classification-rule learning involves finding rules or decision trees that 
partition given data into predefined classes. For any realistic problem domain 
of the classification-rule learning, the set of possible decision trees is too 
large to be searched exhaustively. In fact, the computational complexity of 
finding an optimal classification decision tree is NP hard. 
<P>Most of the existing induction-based algorithms use <B>Hunt</B>'s method as 
the basic algorithm.[2] Here is a recursive description of Hunt's method for 
constructing a decision tree from a set T of training cases with classes denoted 
{C<SUB>1</SUB>, C<SUB>2</SUB>, 

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
成av人片一区二区| 亚洲免费在线播放| 91精品国产综合久久香蕉麻豆 | 久久久久久久久久久电影| 欧美片网站yy| 日韩精品一区二区三区三区免费| 欧美日韩不卡一区二区| 欧美视频一二三区| 欧美一级日韩免费不卡| 制服视频三区第一页精品| 欧美日韩在线精品一区二区三区激情| 色噜噜偷拍精品综合在线| 欧洲激情一区二区| 欧美一区二区在线播放| 精品久久久久久久久久久院品网 | 综合激情成人伊人| 亚洲精品免费在线| 亚洲第一电影网| 麻豆国产精品一区二区三区| 久久精品国产精品亚洲红杏| 国产精品白丝jk白祙喷水网站| 国产成人免费xxxxxxxx| 91网上在线视频| 日韩精品一区二区三区中文精品| 日韩免费成人网| 国产精品乱码人人做人人爱| 亚洲精品高清在线| 美女视频黄a大片欧美| 成人av网站免费观看| 欧美人xxxx| 国产欧美日韩精品一区| 亚洲一级不卡视频| 国产麻豆视频精品| 欧美色窝79yyyycom| 久久久综合视频| 午夜影院久久久| 国产精品一区免费视频| 欧美无乱码久久久免费午夜一区| 欧美成人猛片aaaaaaa| 国产精品国产精品国产专区不片| 视频一区中文字幕国产| 成人福利视频在线看| 91麻豆精品国产无毒不卡在线观看| 国产亚洲午夜高清国产拍精品| 一区二区在线免费观看| 激情综合一区二区三区| 欧美三级视频在线播放| 中文天堂在线一区| 麻豆国产欧美日韩综合精品二区| 99久久精品免费看| 久久一日本道色综合| 午夜激情久久久| 91免费在线视频观看| 欧美激情一区二区三区在线| 日本不卡一区二区三区| 色哟哟国产精品免费观看| 久久久精品黄色| 久久99精品国产麻豆婷婷洗澡| 在线视频你懂得一区| 中文字幕精品三区| 国产在线精品一区二区夜色 | 国产精品久久久久久久久久免费看| 亚洲18女电影在线观看| 成人免费黄色在线| 欧美电影免费观看高清完整版 | 国产不卡视频在线播放| 欧美mv日韩mv| 久久狠狠亚洲综合| 欧美酷刑日本凌虐凌虐| 亚洲午夜一区二区| 日本大香伊一区二区三区| 亚洲特黄一级片| 97精品久久久久中文字幕| 国产精品国产三级国产专播品爱网 | 亚洲午夜久久久久久久久电影网| 99re热这里只有精品视频| 国产日韩欧美不卡在线| 国产激情91久久精品导航| 精品国产91乱码一区二区三区| 欧美aaaaa成人免费观看视频| 91精品国产一区二区三区| 日韩国产精品91| 精品国产污污免费网站入口 | 欧美一区二区久久久| 奇米精品一区二区三区在线观看一 | 91福利区一区二区三区| 亚洲精品你懂的| 91麻豆精品国产91久久久| 日本欧美一区二区三区乱码 | 色欧美片视频在线观看| 亚洲一区二区三区四区五区黄| 色噜噜夜夜夜综合网| 日韩精品免费视频人成| 欧美成人精品3d动漫h| 国产盗摄一区二区三区| 亚洲欧洲av色图| 666欧美在线视频| 精品亚洲欧美一区| 国产精品久久久久久久久久免费看| 91国产免费观看| 日韩电影在线免费| 欧美激情在线一区二区三区| 色天使久久综合网天天| 日韩在线播放一区二区| 日本一区二区三区四区| 色美美综合视频| 国精产品一区一区三区mba视频 | 自拍av一区二区三区| 欧美男男青年gay1069videost | 蜜臀av性久久久久蜜臀aⅴ| 日本一区二区三区dvd视频在线 | 日本欧美一区二区在线观看| 国产日产亚洲精品系列| 色婷婷精品大在线视频| 精品一区二区三区视频| 一区二区三区四区激情| 久久久激情视频| 欧美精品免费视频| www.视频一区| 久久99精品久久久久久久久久久久| 一区二区三区在线看| 91麻豆精品国产91久久久使用方法 | 成人av在线看| 日韩成人午夜精品| 国产精品久久久久久久久动漫 | 在线不卡一区二区| 不卡视频一二三四| 另类调教123区 | 成人av动漫在线| 久久丁香综合五月国产三级网站 | 欧美日本高清视频在线观看| 懂色av一区二区三区免费观看 | 色综合久久中文综合久久牛| 精品一区二区三区的国产在线播放| 中文字幕亚洲一区二区av在线| 日韩精品中文字幕在线一区| 欧美亚洲高清一区二区三区不卡| 国产激情视频一区二区在线观看| 日韩不卡一区二区| 一区av在线播放| 亚洲欧美色一区| 综合亚洲深深色噜噜狠狠网站| 精品成人一区二区三区| 欧美一区二区三区小说| 欧美性大战久久久久久久蜜臀| 91免费版pro下载短视频| 成人一区二区三区视频在线观看| 久久国产成人午夜av影院| 青青草国产精品亚洲专区无| 亚洲午夜激情网站| 亚洲一区二区免费视频| 一区二区三区在线看| 亚洲午夜在线观看视频在线| 亚洲午夜在线电影| 亚洲成人av资源| 日本成人在线看| 狠狠色狠狠色综合| 国产成人免费网站| av一区二区三区四区| 99视频一区二区| 在线视频你懂得一区| 精品视频在线看| 91精品国产一区二区三区蜜臀 | 欧美男人的天堂一二区| 欧美日韩成人一区| 欧美成人伊人久久综合网| 制服.丝袜.亚洲.中文.综合| 在线看不卡av| 欧美一区二区三区在线观看视频| 欧美一区二区三区视频免费| 中文字幕在线一区二区三区| 5566中文字幕一区二区电影| 欧美色国产精品| 91免费视频网| 欧美人妇做爰xxxⅹ性高电影| 欧美一级在线观看| 欧美高清dvd| 欧美va亚洲va国产综合| 日韩女优av电影| 国产女主播一区| 亚洲小少妇裸体bbw| 麻豆国产欧美日韩综合精品二区| 国精产品一区一区三区mba视频| 国产经典欧美精品| 欧美日韩综合一区| 精品日韩一区二区| 亚洲欧美色一区| 久久国产尿小便嘘嘘尿| 色域天天综合网| 日韩情涩欧美日韩视频| 国产午夜亚洲精品不卡| 亚洲综合在线第一页| 久久国内精品视频| 欧美优质美女网站| 久久这里只有精品6| 亚洲影视在线观看| 国产91精品免费| 69堂成人精品免费视频| 欧美国产日韩精品免费观看| 亚洲一区二区三区四区五区中文|