亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? rbcfix_eng.m

?? 基于matlab的經(jīng)濟(jì)學(xué)方面的一些程序
?? M
字號(hào):
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%            RBC model with fixed labor supply                %
%                                                             %
%                                                             %
%         For a description see Fabrice Collard's             %
%                manuscript with the title                    %
%  "Solving the Solow Growth Model by Linear Approximation".  %
%                                                             %
%                 This code is based on                       %
%     Fabrice's code that you can find in the appendix to     %
%  "Solving the Solow Growth Model by Linear Approximation"   %
%             and in the more recent manuscript               %
%    on the baseline RBC model (also by Fabrice Collard).     %
%                                                             %
%                Manuel Waelti, February 2002                 %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear all;                % Clear the memory
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%                     Algorithm Parameters                    %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
ncont=3;                  % # of static equations
nback=1;                  % # of Backward endogenous state variables
nshoc=1;                  % # of exogenous shocks
ntotb=nback+nshoc;        % Total # of Backward state variables
nforw=1;                  % # of Forward endogenous state variables
nstat=ntotb+nforw;        % Total # of state variables
long=120;                 % Length of simulated series
trunc=50;                 % Truncature of simulations
slong=long+trunc;         % Length of simulation
nsim=100;                % # of simulations [original: 5000]
nrep=200;                 % IRF horizon
Mcc=zeros(ncont,ncont);   % Matrix Control-Control
Mcs=zeros(ncont,nstat);   % Matrix Control-State   
Mss0=zeros(nstat,nstat);  % Matrix State-State
Mss1=zeros(nstat,nstat);  % Matrix State-State lagged
Msc0=zeros(nstat,ncont);  % Matrix State-Control     
Msc1=zeros(nstat,ncont);  % Matrix State-Controle lagged
Mse=zeros(nstat,nshoc);   % Matrix State-Shocks           
select=[1:3];             % Selection of variables of interest [from C]
indy=2;                   % Index of Y(t) in the selection
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%             Structural Parameters of the Economy            %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
beta=0.99;                % Discount factor
sigma=2;                  % Elasticity of utility
alpha=0.4;                % Elasticity of output with regard to capital
delta=0.025;              % Depreciation rate
rho=0.95;                 % Autocorrelation of the shock
stda=0.01;                % Standard deviation of the shock
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%                       Steady state                          %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
koy=(alpha*beta)/(1-beta*(1-delta));        % ratios
ioy=delta*koy;
coy=1-ioy;
yss=koy^(alpha/(1-alpha));                  % steady state values
kss=koy*yss;
css=coy*yss;
iss=ioy*yss;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%                      Define the matrices                    %
%                                                             %
%                                                             %
%  Mcc X(t) = Mcs S(t)                                        %
%  Mss0 S(t+1) + Mss1 S(t) = Msc0 X(t+1) + Msc1 X(t) + e(t+1) %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Static equations :
%
% c y i
% 1 2 3
%
% Dynamic equations :
%
% k a lambda
% 1 2 3 
%
% Mcc
%
Mcc(1,1)=-sigma;
Mcc(2,2)=1;
Mcc(3,1)=-coy;
Mcc(3,2)=1;
Mcc(3,3)=-ioy;
%
% Mcs
%
Mcs(1,3)=1;
Mcs(2,1)=alpha;
Mcs(2,2)=1;
%
% Mss0
%
Mss0(1,1)=1;
Mss0(2,2)=1;
Mss0(3,1)=alpha*beta/koy;
Mss0(3,3)=-1;
%
% Mss1
%
Mss1(1,1)=-(1-delta);
Mss1(2,2)=-rho;
Mss1(3,3)=1;
%
% Msc0
%
Msc0(3,2)=alpha*beta/koy;
%
% Msc1
%
Msc1(1,3)=delta;
%
% Mse
%
Mse(2,1)=1;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%              Solve the Farmer's system                      %
%                                                             %
%           -1                                                %
% X(t) = Mcc  Mcs S(t)                                        %
%                                                             %
%                      -1             -1                      %
% S(t+1)=(Mss0-Msc0 Mcc  Mcs)(Msc1 Mcc  Mcs-Mss1)S(t)         %
%                       -1                                    %
%        +(Mss0-Msc0 Mcc  Mcs)e(t+1)                          %
%                                                             %
% S(t+1) = W S(t) + R e(t+1)                                  %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% First form the preceeding system
%
M0=inv(Mss0-Msc0*inv(Mcc)*Mcs);
M1=(Mss1-Msc1*inv(Mcc)*Mcs);
W=-M0*M1;
%
% 1) Compute the eigenvalues (MU) and eigenvectors (P) of W
% 2) Compute their modulus (AMU)
% 3) Sort the eigenvalues and rearrange the matrix of eigenvectors accordingly (P)
% 4) Form the inverse of P (Ps)
%
[P,MU] = eig(W);
AMU=diag(abs(MU))';
disp('Eigenvalues / modulus of the system :')
disp('=====================================')
disp(' ');       
disp([diag(MU)';AMU])
flag=sum(AMU>1);
if flag==nforw;
   disp('Blanchard-Kahn conditions checked')
else
   disp('Blanchard-Kahn conditions NOT checked')
end;   
disp(' ');       
[MU,k] = sort(AMU);
P=P(:,k);
Ps=inv(P);
%
% Solves the system using Farmer's method
%
M=[eye(ntotb);-inv(Ps(ntotb+1:nstat,ntotb+1:nstat))*Ps(ntotb+1:nstat,1:ntotb)];
MSS=W(1:ntotb,:)*M;
M2=M0*Mse;
MSE=M2(1:ntotb,nshoc);                                               
PI=inv(Mcc)*Mcs*M;
%
% We are done !!
%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%  So we now get :                                            %
%                                                             %
%  X(t)=Pi S(t)                                               %
%                                                             %
%  S(t+1)=MSS S(t) + MSE e(t+1)                               %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
disp('Policy Functions :')
disp('==================');
disp(' ');
disp('K(t+1) - A(t+1) as functions of (K(t),A(t)) :');
disp(' ');
disp(MSS);
disp('C(t) - Y(t) - I(t) as functions of (K(t),A(t)) :');
disp(' ');
disp(PI);
diary off;						% Stop recording output in a file
disp('Hit a Key');pause;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%     Impulse response functions to a technological shock     %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
CA=[1];								    % initial value of the impulse
REPSA=zeros(ntotb,nrep);				% IRF matrix of state variables
REPSA(:,1)=MSE*CA;						% Initialize the IRF matrix of state variables
for i=2:nrep;							%
    REPSA(:,i)=MSS*REPSA(:,i-1);		% Main loop for IRF
end;									%
REPXA=PI*REPSA;							% IRF matrix of controls
%
% Graphs
%
T=1:nrep;
subplot(221);plot(T,REPXA(1,:));title('IRF(C,A)');
xlabel('Quarters');ylabel('% deviation')
subplot(222);plot(T,REPXA(2,:));title('IRF(Y,A)');
xlabel('Quarters');ylabel('% deviation')
subplot(223);plot(T,REPXA(3,:));title('IRF(I,A)');
xlabel('Quarters');ylabel('% deviation')
subplot(224);plot(T,REPSA(1,:));title('IRF(K,A)');
xlabel('Quarters');ylabel('% deviation')
print -dps irbc1.eps;
pause;close		                        % wait for you to hit a key and close the graph window
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%                          Simulation                         %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

HP=hpmat(long,1600); % Retrieve the matrix for the HP filter

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%                                                             %
%                     Loop of Simulation                      %
%                                                             %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
% The deterministic component
%
% Trick : kron performs the kronecker product of 2 matrices.
%
determ=kron(log([css;yss;iss]),ones(1,long));
%
% stochastic Simulation
%
SHP=[];SRHP=[];CHP=[];
for j=1:nsim;
   disp(sprintf('Simulation : %4.0f',j));
   %
   % Random generator
   %
   CHOC=[stda]*randn(nshoc,slong);
   %
   % Initialize the states
   %
   SSIM=MSE*CHOC(1,1);
   %
   % Iterate on the state equation to obtain series of the state variables
   %
   for i=2:slong;
      SSIM=[SSIM MSS*SSIM(:,i-1)+MSE*CHOC(:,i)];
   end;
   %
   % Build selected controls
   %
   XSIM=PI(select,:)*SSIM(:,trunc:trunc+long-1)+determ;
   %
   % Obtain their HP-痩tered representation
   %
   HPSIM=XSIM'-HP\XSIM';
   %
   % Centering (Actually HP-痩tered variables are centered)
   %
   HPSIM=HPSIM-kron(mean(HPSIM),ones(length(HPSIM),1));
   %
   % Store the moments in different matrices
   %
   % For example : at iteration "i", SHP has i rows. then at iteration "i+1"
   % the SHP equals the SHP matrix to which we add another
   % line containing std(HPSIM).
   %
   SHP=[SHP;std(HPSIM)];
   SRHP=[SRHP;std(HPSIM)/std(HPSIM(:,indy))];
   VCOV=HPSIM'*HPSIM;
   CHP=[CHP;VCOV(indy,:)./sqrt(diag(VCOV)'*VCOV(indy,indy))];
end;                                                         
%
% End of Monte-Carlo loop. Now, display the results
%
diary solow_new.res;		% restart recording output in the file solow_new.res
disp(' ');
disp('Quantitative Evaluation :');
disp('=========================');
disp(' ');
disp(sprintf('%Based on %5.0f simulations',nsim));
disp(' ');
disp('Standard Deviations : C - Y - I');
disp(' ');
disp(100*[mean(SHP);std(SHP)]);
disp(' ');
disp('Relative Standard Deviations : C - Y - I');
disp(' ');
disp([mean(SRHP);std(SRHP)]);
disp(' ');
disp('Correlation with Output : C - Y - I');
disp(' ');
disp([mean(CHP);std(CHP)]);
diary off;

?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號(hào) Ctrl + =
減小字號(hào) Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
亚洲黄色在线视频| 欧日韩精品视频| 精品国产髙清在线看国产毛片| 亚洲男人天堂一区| 色哟哟国产精品免费观看| 亚洲欧美日韩国产综合在线| 在线观看一区不卡| 日韩高清不卡一区| 精品剧情在线观看| 成人精品国产福利| 亚洲美女区一区| 欧美女孩性生活视频| 日韩av中文字幕一区二区| 久久精品无码一区二区三区 | 国产精品盗摄一区二区三区| 99精品视频一区二区| 亚洲一二三四久久| 日韩精品中文字幕一区二区三区| 国产一区美女在线| 一区二区三区欧美日韩| 欧美精品v国产精品v日韩精品| 九九九精品视频| 日本一区二区三区四区在线视频 | 亚洲一线二线三线久久久| 欧美日韩国产综合一区二区| 久久99这里只有精品| 亚洲私人影院在线观看| 91精品国产乱码久久蜜臀| 丰满亚洲少妇av| 亚洲一区在线播放| 亚洲国产精品二十页| 欧美日产在线观看| 成人免费视频一区| 日本在线不卡一区| 中文字幕亚洲欧美在线不卡| 欧美色老头old∨ideo| 国产不卡视频在线播放| 亚洲国产成人av网| 国产精品国产精品国产专区不片| 欧美精品久久久久久久多人混战 | 午夜精品久久久久久不卡8050| 久久在线观看免费| 欧美亚洲综合色| 成人精品免费视频| 免费看欧美美女黄的网站| 亚洲免费观看视频| 国产欧美一区二区三区在线老狼| 欧美视频一区在线| 91丨九色丨国产丨porny| 国内精品自线一区二区三区视频| 一区二区三区欧美亚洲| 国产精品入口麻豆九色| 日韩欧美的一区二区| 欧美三级在线看| 99精品视频在线免费观看| 国产福利一区二区三区视频在线 | 日韩欧美国产成人一区二区| 欧美午夜影院一区| 99精品一区二区三区| 国产精品一卡二| 国产一区二区精品久久| 日本亚洲三级在线| 日本中文字幕一区二区视频| 亚洲v精品v日韩v欧美v专区| 亚洲免费av高清| 亚洲人成精品久久久久久| 国产女人水真多18毛片18精品视频| 精品国精品国产尤物美女| 日韩一二在线观看| 日韩一区二区不卡| 欧美岛国在线观看| 日韩欧美精品三级| 欧美刺激午夜性久久久久久久| 欧美一区二区视频在线观看2022| 欧美熟乱第一页| 欧美一区二区三区在线视频| 欧美丰满美乳xxx高潮www| 欧美精品成人一区二区三区四区| 欧美日韩三级在线| 91精品国产欧美一区二区18| 日韩欧美中文字幕制服| 日韩亚洲欧美综合| wwww国产精品欧美| 国产午夜亚洲精品不卡| 国产精品美女久久久久久久久久久| 久久蜜桃香蕉精品一区二区三区| 久久亚洲精品小早川怜子| 久久久亚洲欧洲日产国码αv| 国产日韩高清在线| 中文字幕在线观看不卡| 亚洲综合偷拍欧美一区色| 五月激情六月综合| 麻豆91在线观看| 国产成人精品aa毛片| 91在线你懂得| 欧美理论片在线| 精品捆绑美女sm三区| 中文字幕免费一区| 亚洲自拍另类综合| 裸体在线国模精品偷拍| 成人免费视频app| 在线视频中文字幕一区二区| 777午夜精品免费视频| 久久久久国产精品免费免费搜索| 国产精品国产三级国产普通话蜜臀 | 国产99久久久久久免费看农村| 99免费精品在线| 欧美乱妇20p| 国产亚洲成av人在线观看导航| 亚洲欧美日韩在线| 美女视频一区在线观看| 国产·精品毛片| 欧美日韩国产综合久久| 久久婷婷久久一区二区三区| 亚洲人快播电影网| 久久成人久久鬼色| 99精品热视频| 日韩一区二区三区高清免费看看 | 中文字幕一区二区三中文字幕| 亚洲国产成人av好男人在线观看| 国产米奇在线777精品观看| 一本色道久久加勒比精品| 欧美成人精精品一区二区频| 国产精品久久久久久久久果冻传媒 | 欧美亚洲精品一区| 久久一夜天堂av一区二区三区| 亚洲欧美日韩国产综合在线| 精品一区精品二区高清| 在线亚洲精品福利网址导航| 久久蜜桃香蕉精品一区二区三区| 亚洲一区二区视频在线| 岛国一区二区在线观看| 欧美一二三四区在线| 玉足女爽爽91| 国产精品一二三四| 欧美一区二区三区播放老司机| 亚洲欧美日韩中文播放 | 日本道精品一区二区三区 | www.日韩精品| 精品理论电影在线观看| 丝袜诱惑制服诱惑色一区在线观看| 粉嫩av一区二区三区| 精品国产髙清在线看国产毛片| 亚洲国产精品一区二区久久| 91在线播放网址| 国产精品乱码一区二区三区软件 | 国产一区二区三区精品欧美日韩一区二区三区| 91麻豆文化传媒在线观看| 日本一区二区三区免费乱视频 | 国产精品中文字幕欧美| 欧美精品一卡二卡| 亚洲国产精品久久久男人的天堂| 99精品国产热久久91蜜凸| 国产日韩欧美电影| 国产成人自拍网| 精品少妇一区二区三区| 日韩有码一区二区三区| 在线观看免费一区| 亚洲精品菠萝久久久久久久| 91丨国产丨九色丨pron| 亚洲人一二三区| 色综合一区二区| 国产精品久久久久久福利一牛影视| 国产成人综合网| 国产精品情趣视频| 粉嫩蜜臀av国产精品网站| 中文字幕第一区第二区| 成人97人人超碰人人99| 国产精品久久久久久久久动漫| 成人午夜私人影院| 国产精品不卡在线| 91在线视频免费观看| 亚洲久本草在线中文字幕| 色哟哟一区二区在线观看| 一区二区三区在线观看国产| 在线观看国产日韩| 日韩激情av在线| 日韩三级视频在线看| 国产乱淫av一区二区三区| 久久蜜桃一区二区| 欧美一区二区三级| 精品亚洲国产成人av制服丝袜| 精品国精品国产| 国产激情一区二区三区四区| 国产精品精品国产色婷婷| 一本色道久久综合精品竹菊| 亚洲成人1区2区| 欧美r级在线观看| 国产91对白在线观看九色| 综合久久久久综合| 欧美日韩和欧美的一区二区| 蜜桃传媒麻豆第一区在线观看| wwwwxxxxx欧美| 色拍拍在线精品视频8848| 亚洲va欧美va国产va天堂影院| 日韩精品一区二区三区中文不卡 | 日韩精品一区第一页| 欧美精品一区二区三区蜜桃 | 欧美精彩视频一区二区三区| 97久久超碰精品国产|