?? data-structure
字號:
The routines use a common data structure 'hmm' with fields:hmm.obsmodel name of observation model 'Gauss' - Gaussian 'GaussCom' - Gaussian with common cov 'LIKE' - Likelihood data, i.e. no obsmodel 'Poisson' - Poissonhmm.train.obsupdate update observation model (1 or 0) .pupdate update transition matrix (1 or 0) .init initialised (1 or 0) .cyc max number of cycles through data .tol termination tolerance of likelihoodhmm.data.Xtrain training data .T length of training sequence .Xtest testing datahmm.K number of hidden states .Pi initial state probability .P state transition probabilities .LPtrain training log likelihoodhmm.gmmll loglikelihood of gmm model used for initialisationhmm.mix gaussian mixture model trained on same datahmm.priors.Dir2d_alpha 2-D Dirichlet prior counts for Tx Probabilities .Dir_alpha Dirichlet prior counts for hidden Probabilities @t=0For 'Gauss' and 'GaussCom' observation models we also have:hmm.state(k).Mu mean vector for state k .Cov mean covariance matrix for state k .priors priors for each state .norm_Mu Prior for mean: mean (1,dimension(data)) .norm_Cov Prior for mean: covariance .norm_Prec Prior for mean: precision .Wish_alpha Prior for Covariance: scale parameter .Wish_B Prior for Covariance: shape matrix .Wish_k Prior for Covariance: dimension of shape matrixFor 'Poisson' observation models we also have:hmm.state(k).lambda mean/rate of poisson pdf for state k .priors priors for each state .norm_alpha Prior for mean: scale .norm_beta Prior for mean: shapeFor 'LIKE' observation models we have no parameters
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -