?? 單源最短路徑dijkstra.txt
字號:
#include <iostream>
using namespace std ;
const N = 10 ;
const MaxWeight = 9999 ;
int a[N][N] ;
int n ; // 頂點(diǎn)的個數(shù)
void Dijkstra( int v0, int distance[], int path[])
//網(wǎng)G從頂點(diǎn)v0到其它頂點(diǎn)的最短距離distance和最短路徑path
{
int *s = new int[n];
int minDis, i, j, u;
//初始化
for(i = 0; i < n; i ++)
{
distance[i] = a[v0][i] ;
s[i] = 0;
if(i != v0 && distance[i] < MaxWeight) path[i] = v0;
else path[i] = -1;
}
s[v0] = 1; //標(biāo)記頂點(diǎn)v0已從集合T加入到集合S中
//在當(dāng)前還未找到最短路徑的頂點(diǎn)集中選取具有最短距離的頂點(diǎn)u
for(i = 1; i < n; i ++)
{
minDis = MaxWeight;
for(j = 0; j < n; j ++)
if(s[j] == 0 && distance[j] < minDis)
{
u = j;
minDis = distance[j];
}
if(minDis == MaxWeight) return; //當(dāng)已不再存在路徑時算法結(jié)束
s[u] = 1; //標(biāo)記頂點(diǎn)u已從集合T加入到集合S中
//修改從v0到其它頂點(diǎn)的最短距離和最短路徑
for(j = 0; j < n; j++)
if(s[j] == 0 && a[u][j] < MaxWeight &&
distance[u] + a[u][j] < distance[j])
{
//頂點(diǎn)v0經(jīng)頂點(diǎn)u到其它頂點(diǎn)的最短距離和最短路徑
distance[j] = distance[u] + a[u][j];
path[j] = u;
}
}
}
?? 快捷鍵說明
復(fù)制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -