亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? mixturedistribution.java

?? 一個小型的數據挖掘器應用軟件,綜合數據挖掘的各種功能
?? JAVA
字號:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or (at *    your option) any later version. * *    This program is distributed in the hope that it will be useful, but *    WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU *    General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.  *//* *    MixtureDistribution.java *    Copyright (C) 2002 Yong Wang * */package weka.classifiers.functions.pace;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import weka.core.matrix.DoubleVector;import weka.core.matrix.IntVector;/** * Abtract class for manipulating mixture distributions. <p> * * REFERENCES <p> *  * Wang, Y. (2000). "A new approach to fitting linear models in high * dimensional spaces." PhD Thesis. Department of Computer Science, * University of Waikato, New Zealand. <p> *  * Wang, Y. and Witten, I. H. (2002). "Modeling for optimal probability * prediction." Proceedings of ICML'2002. Sydney. <p> * * @author Yong Wang (yongwang@cs.waikato.ac.nz) * @version $Revision: 1.3 $ */public abstract class MixtureDistribution  implements TechnicalInformationHandler {    protected DiscreteFunction mixingDistribution;  /** The nonnegative-measure-based method */  public static final int NNMMethod = 1;       /** The probability-measure-based method */  public static final int PMMethod = 2;  // The CDF-based method  // public static final int CDFMethod = 3;      // The method based on the Kolmogrov and von Mises measure  // public static final int ModifiedCDFMethod = 4;   /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;    TechnicalInformation 	additional;        result = new TechnicalInformation(Type.PHDTHESIS);    result.setValue(Field.AUTHOR, "Wang, Y");    result.setValue(Field.YEAR, "2000");    result.setValue(Field.TITLE, "A new approach to fitting linear models in high dimensional spaces");    result.setValue(Field.SCHOOL, "Department of Computer Science, University of Waikato");    result.setValue(Field.ADDRESS, "Hamilton, New Zealand");    additional = result.add(Type.INPROCEEDINGS);    additional.setValue(Field.AUTHOR, "Wang, Y. and Witten, I. H.");    additional.setValue(Field.YEAR, "2002");    additional.setValue(Field.TITLE, "Modeling for optimal probability prediction");    additional.setValue(Field.BOOKTITLE, "Proceedings of the Nineteenth International Conference in Machine Learning");    additional.setValue(Field.YEAR, "2002");    additional.setValue(Field.PAGES, "650-657");    additional.setValue(Field.ADDRESS, "Sydney, Australia");        return result;  }      /**    * Gets the mixing distribution   *    * @return the mixing distribution   */  public DiscreteFunction getMixingDistribution() {    return mixingDistribution;  }  /** Sets the mixing distribution   *  @param d the mixing distribution   */  public void  setMixingDistribution( DiscreteFunction d ) {    mixingDistribution = d;  }  /** Fits the mixture (or mixing) distribution to the data. The default   *  method is the nonnegative-measure-based method.   * @param data the data, supposedly generated from the mixture model */  public void fit( DoubleVector data ) {    fit( data, NNMMethod );  }  /** Fits the mixture (or mixing) distribution to the data.   *  @param data the data supposedly generated from the mixture    *  @param method the method to be used. Refer to the static final   *  variables of this class. */  public void fit( DoubleVector data, int method ) {    DoubleVector data2 = (DoubleVector) data.clone();    if( data2.unsorted() ) data2.sort();    int n = data2.size();    int start = 0;    DoubleVector subset;    DiscreteFunction d = new DiscreteFunction();    for( int i = 0; i < n-1; i++ ) {      if( separable( data2, start, i, data2.get(i+1) ) &&	  separable( data2, i+1, n-1, data2.get(i) ) ) {	subset = (DoubleVector) data2.subvector( start, i );	d.plusEquals( fitForSingleCluster( subset, method ).		      timesEquals(i - start + 1) );	start = i + 1;      }    }    subset = (DoubleVector) data2.subvector( start, n-1 );    d.plusEquals( fitForSingleCluster( subset, method ).		  timesEquals(n - start) );     d.sort();    d.normalize();    mixingDistribution = d;  }      /**    *  Fits the mixture (or mixing) distribution to the data. The data is   *  not pre-clustered for computational efficiency.   *     *  @param data the data supposedly generated from the mixture    *  @param method the method to be used. Refer to the static final   *  variables of this class.   *  @return the generated distribution   */  public DiscreteFunction fitForSingleCluster( DoubleVector data, 					       int method ) {        if( data.size() < 2 ) return new DiscreteFunction( data );    DoubleVector sp = supportPoints( data, 0 );    PaceMatrix fi = fittingIntervals( data );    PaceMatrix pm = probabilityMatrix( sp, fi );    PaceMatrix epm = new       PaceMatrix( empiricalProbability( data, fi ).		  timesEquals( 1. / data.size() ) );        IntVector pvt = (IntVector) IntVector.seq(0, sp.size()-1);    DoubleVector weights;        switch( method ) {    case NNMMethod:       weights = pm.nnls( epm, pvt );      break;    case PMMethod:      weights = pm.nnlse1( epm, pvt );      break;    default:       throw new IllegalArgumentException("unknown method");    }        DoubleVector sp2 = new DoubleVector( pvt.size() );    for( int i = 0; i < sp2.size(); i++ ){      sp2.set( i, sp.get(pvt.get(i)) );    }        DiscreteFunction d = new DiscreteFunction( sp2, weights );    d.sort();    d.normalize();    return d;  }      /**    *  Return true if a value can be considered for mixture estimatino   *  separately from the data indexed between i0 and i1    *     *  @param data the data supposedly generated from the mixture    *  @param i0 the index of the first element in the group   *  @param i1 the index of the last element in the group   *  @param x the value   *  @return true if a value can be considered   */  public abstract boolean separable( DoubleVector data, 				     int i0, int i1, double x );      /**    *  Contructs the set of support points for mixture estimation.   *     *  @param data the data supposedly generated from the mixture    *  @param ne the number of extra data that are suppposedly discarded   *  earlier and not passed into here   *  @return the set of support points   */  public abstract DoubleVector  supportPoints( DoubleVector data, int ne );      /**    *  Contructs the set of fitting intervals for mixture estimation.   *     *  @param data the data supposedly generated from the mixture    *  @return the set of fitting intervals   */  public abstract PaceMatrix  fittingIntervals( DoubleVector data );    /**    *  Contructs the probability matrix for mixture estimation, given a set   *  of support points and a set of intervals.   *     *  @param s  the set of support points   *  @param intervals the intervals   *  @return the probability matrix   */  public abstract PaceMatrix  probabilityMatrix( DoubleVector s, 						 PaceMatrix intervals );      /**    *  Computes the empirical probabilities of the data over a set of   *  intervals.   *     *  @param data the data   *  @param intervals the intervals    *  @return the empirical probabilities   */  public PaceMatrix  empiricalProbability( DoubleVector data, 					   PaceMatrix intervals )  {    int n = data.size();    int k = intervals.getRowDimension();    PaceMatrix epm = new PaceMatrix( k, 1, 0 );        double point;    for( int j = 0; j < n; j ++ ) {      for(int i = 0; i < k; i++ ) {	point = 0.0;	if( intervals.get(i, 0) == data.get(j) || 	    intervals.get(i, 1) == data.get(j) ) point = 0.5;	else if( intervals.get(i, 0) < data.get(j) && 		 intervals.get(i, 1) > data.get(j) ) point = 1.0;	epm.setPlus( i, 0, point);      }    }    return epm;  }    /**    * Converts to a string   *    * @return a string representation   */  public String  toString()   {    return "The mixing distribution:\n" + mixingDistribution.toString();  }    }

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美日韩一二区| 欧美影院午夜播放| 韩国理伦片一区二区三区在线播放| 亚洲影视在线播放| 一区二区三区在线播放| 亚洲精品免费一二三区| 一区二区三区四区高清精品免费观看 | 欧美日韩国产另类不卡| 欧洲一区二区av| 欧美伦理电影网| 精品99一区二区| 中日韩av电影| 亚洲人成7777| 视频一区视频二区中文字幕| 免费美女久久99| 国产电影一区在线| 91香蕉视频mp4| 欧美精品1区2区| 久久精品一区四区| 亚洲女人小视频在线观看| 亚洲午夜久久久久中文字幕久| 五月天亚洲婷婷| 国产在线麻豆精品观看| av中文字幕一区| 日韩西西人体444www| 中文字幕乱码久久午夜不卡| 亚洲激情第一区| 极品少妇一区二区三区精品视频| 成人午夜伦理影院| 欧美一区二区三区喷汁尤物| 亚洲国产高清aⅴ视频| 午夜亚洲国产au精品一区二区| 久久电影网电视剧免费观看| 成人黄色av网站在线| 欧美日韩国产三级| 国产精品色哟哟| 欧美aaa在线| 一本大道久久a久久综合婷婷| 日韩精品一区在线观看| 亚洲裸体在线观看| 国产精品成人免费| 日韩精品免费专区| 99国产精品久久久久| 91精品国产免费久久综合| 亚洲日本青草视频在线怡红院| 久久精品国产99久久6| 一本色道亚洲精品aⅴ| 国产婷婷色一区二区三区| 午夜精品成人在线视频| 99re成人精品视频| wwww国产精品欧美| 美女脱光内衣内裤视频久久网站 | 久久se精品一区精品二区| 91麻豆自制传媒国产之光| 国产拍欧美日韩视频二区| 秋霞电影网一区二区| 欧美伊人精品成人久久综合97| 中文字幕日韩av资源站| 国产高清在线精品| 精品不卡在线视频| 精品一区二区三区免费毛片爱| 91精品午夜视频| 天天综合色天天综合色h| 在线一区二区三区四区| 亚洲另类一区二区| 91麻豆免费视频| 自拍偷自拍亚洲精品播放| 成人一区二区在线观看| 久久精品人人做人人综合| 国内欧美视频一区二区| 2020国产精品自拍| 国产一区二区三区观看| 久久精品视频在线免费观看| 国产一区二区不卡| 国产精品丝袜一区| 色综合天天做天天爱| 亚洲黄色性网站| 欧美亚洲另类激情小说| 香蕉影视欧美成人| 日韩欧美色电影| 精品一区二区精品| 国产精品灌醉下药二区| 91麻豆福利精品推荐| 亚洲国产视频a| 欧美一卡在线观看| 国产一二三精品| 中文字幕一区在线| 欧美视频日韩视频| 麻豆91免费看| 亚洲国产精品ⅴa在线观看| eeuss鲁片一区二区三区| 亚洲蜜臀av乱码久久精品蜜桃| 91国产成人在线| 日本91福利区| 国产精品网站在线观看| 色婷婷综合久久久中文字幕| 肉肉av福利一精品导航| 日韩美女视频一区二区在线观看| 成人免费视频视频| 一区二区三区日韩精品视频| 91精品国产一区二区| 国产高清一区日本| 亚洲高清不卡在线| 国产三级欧美三级| 欧美色图在线观看| 国产成+人+日韩+欧美+亚洲| 亚洲综合激情网| 久久久久久免费网| 欧美日韩一区二区在线观看视频| 久久不见久久见中文字幕免费| 亚洲午夜一二三区视频| 日韩欧美中文一区| 一本大道综合伊人精品热热| 精品一二三四区| 亚洲综合视频网| 国产精品午夜免费| 日韩欧美区一区二| 欧美亚洲愉拍一区二区| 国产精品一级在线| 五月婷婷色综合| 亚洲人成网站在线| 2020国产精品自拍| 欧美一区二区三区免费大片| 99国产精品久久| 国产精品99久久久久久似苏梦涵| 三级久久三级久久久| 亚洲人成亚洲人成在线观看图片 | 亚洲宅男天堂在线观看无病毒| 久久免费看少妇高潮| 在线播放国产精品二区一二区四区| 99这里都是精品| 成人性生交大片免费看中文网站| 青青国产91久久久久久| 午夜免费久久看| 亚洲夂夂婷婷色拍ww47 | 欧美一区二区三区四区视频 | 久久国内精品自在自线400部| 一区二区三区中文字幕| 中文字幕中文在线不卡住| 国产色产综合产在线视频| 精品免费一区二区三区| 91.麻豆视频| 91精品中文字幕一区二区三区| 91福利国产精品| 91免费版在线| 一本久久精品一区二区| 99国产精品久久| 91在线免费播放| 97久久超碰国产精品| 色哟哟国产精品| 91国产成人在线| 欧美揉bbbbb揉bbbbb| 欧美年轻男男videosbes| 欧美视频在线不卡| 91精品在线免费| 欧美变态凌虐bdsm| 欧美精品一区二区三区视频| 久久久久久久久久久久电影| 久久久一区二区| 国产精品狼人久久影院观看方式| 国产精品国产三级国产普通话三级| 欧美国产一区视频在线观看| 中文在线一区二区| 亚洲素人一区二区| 午夜精品久久久久久| 久久国产福利国产秒拍| 国产成人福利片| 91色porny蝌蚪| 91精品啪在线观看国产60岁| 日韩视频免费观看高清完整版| 日韩视频一区二区| 日本一区二区三区国色天香| 亚洲欧洲性图库| 五月激情丁香一区二区三区| 乱中年女人伦av一区二区| 国产91精品一区二区麻豆网站| aaa欧美大片| 欧美人妇做爰xxxⅹ性高电影| 精品国产污污免费网站入口| 中文一区二区完整视频在线观看| 亚洲精品视频一区| 日韩中文字幕亚洲一区二区va在线 | 欧美福利电影网| 欧美不卡一区二区三区四区| 国产女同性恋一区二区| 一级日本不卡的影视| 免费看精品久久片| 日韩精品一二三四| 国产成人免费视频网站高清观看视频| 91免费在线播放| 日韩精品一区二区三区中文不卡| 国产精品欧美久久久久一区二区 | 国产一区二区三区黄视频 | 国产精品麻豆网站| 性做久久久久久免费观看欧美| 国产高清不卡二三区| 欧美精品一级二级三级| 中文字幕日韩一区二区| 久久精品国产亚洲aⅴ| 欧美亚洲动漫精品|