亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關于我們
? 蟲蟲下載站

?? demo_mc.m

?? 一個UPF的例程
?? M
?? 第 1 頁 / 共 3 頁
字號:
      Jy = 0.5;    end;    M = R_pfekf + Jy*PPred_pfekf(t)*Jy';                  % Innovations covariance.    K = PPred_pfekf(t)*Jy'*inv(M);                  % Kalman gain.    mu_pfekf(t,i) = muPred_pfekf(t) + K*(y(t)-yPredTmp); % Mean of proposal.    P_pfekf(t) = PPred_pfekf(t) - K*Jy*PPred_pfekf(t);          % Variance of proposal.    xparticlePred_pfekf(t,i) = mu_pfekf(t,i) + sqrtm(P_pfekf(t))*randn(1,1);    PparticlePred_pfekf(t,i) = P_pfekf(t);  end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfekf(t,i) = feval('hfun',xparticlePred_pfekf(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfekf(t,i))^(2)))+1e-99;    prior = ((xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i))^(g1-1)) ...		 * exp(-g2*(xparticlePred_pfekf(t,i)-xparticle_pfekf(t-1,i)));    proposal = inv(sqrt(PparticlePred_pfekf(t,i))) * ...	       exp(-0.5*inv(PparticlePred_pfekf(t,i)) *((xparticlePred_pfekf(t,i)-mu_pfekf(t,i))^(2)));    w(t,i) = lik*prior/proposal;        end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pfekf(t,:) = xparticlePred_pfekf(t,outIndex); % Keep particles with                                              % resampled indices.  Pparticle_pfekf(t,:) = PparticlePred_pfekf(t,outIndex);    end;   % End of t loop.time_pfekf(j) = toc;%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO WITH MCMC  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ======== EKF proposal ==================  %%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfekfMC = ones(T,N);        % These are the particles for the estimate                                      % of x. Note that there's no need to store                                      % them for all t. We're only doing this to                                      % show you all the nice plots at the end.Pparticle_pfekfMC = P0*ones(T,N);     % Particles for the covariance of x.xparticlePred_pfekfMC = ones(T,N);    % One-step-ahead predicted values of the states.PparticlePred_pfekfMC = ones(T,N);    % One-step-ahead predicted values of P.yPred_pfekfMC = ones(T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                        % Importance weights.muPred_pfekfMC = ones(T,1);           % EKF O-s-a estimate of the mean of the states.PPred_pfekfMC = ones(T,1);            % EKF O-s-a estimate of the variance of the states.mu_pfekfMC = ones(T,1);               % EKF estimate of the mean of the states.P_pfekfMC = P0*ones(T,1);             % EKF estimate of the variance of the states.previousXekfMC = ones(T,N);           % Particles at the previous time step. previousXResekfMC = ones(T,N);        % Resampled previousX.previousPekfMC = ones(T,N);           % Covariance particles at the previous time step. previousPResekfMC = ones(T,N);        % Resampled previousP.disp(' ');tic;                                % Initialize timer for benchmarkingfor t=2:T,      fprintf('run = %i / %i :  PF-EKF-MCMC : t = %i / %i  \r',j,no_of_runs,t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the EKF as proposal.  for i=1:N,    muPred_pfekfMC(t) = feval('ffun',xparticle_pfekfMC(t-1,i),t);    Jx = 0.5;                                 % Jacobian for ffun.    PPred_pfekfMC(t) = Q_pfekf + Jx*Pparticle_pfekfMC(t-1,i)*Jx';     yPredTmp = feval('hfun',muPred_pfekfMC(t),t);    if t<=30,      Jy = 2*0.2*muPred_pfekfMC(t);                     % Jacobian for hfun.    else      Jy = 0.5;    end;    M = R_pfekf + Jy*PPred_pfekfMC(t)*Jy';                  % Innovations covariance.    K = PPred_pfekfMC(t)*Jy'*inv(M);                  % Kalman gain.    mu_pfekfMC(t,i) = muPred_pfekfMC(t) + K*(y(t)-yPredTmp); % Mean of proposal.    P_pfekfMC(t) = PPred_pfekfMC(t) - K*Jy*PPred_pfekfMC(t);          % Variance of proposal.    xparticlePred_pfekfMC(t,i) = mu_pfekfMC(t,i) + sqrtm(P_pfekfMC(t))*randn(1,1);    PparticlePred_pfekfMC(t,i) = P_pfekfMC(t);  end;  previousXekfMC(t,:) = xparticle_pfekfMC(t-1,:);  % Store the particles at t-1.   previousPekfMC(t,:) = Pparticle_pfekfMC(t-1,:);  % Store the particles at t-1.       % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfekfMC(t,i) = feval('hfun',xparticlePred_pfekfMC(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfekfMC(t,i))^(2)))+1e-99;    prior = ((xparticlePred_pfekfMC(t,i)-xparticle_pfekfMC(t-1,i))^(g1-1)) ...		 * exp(-g2*(xparticlePred_pfekfMC(t,i)-xparticle_pfekfMC(t-1,i)));    proposal = inv(sqrt(PparticlePred_pfekfMC(t,i))) * ...	       exp(-0.5*inv(PparticlePred_pfekfMC(t,i)) *((xparticlePred_pfekfMC(t,i)-mu_pfekfMC(t,i))^(2)));    w(t,i) = lik*prior/proposal;        end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pfekfMC(t,:) = xparticlePred_pfekfMC(t,outIndex); % Keep particles with                                                         % resampled indices.  Pparticle_pfekfMC(t,:) = PparticlePred_pfekfMC(t,outIndex);    previousXResekfMC(t,:) = previousXekfMC(t,outIndex);  % Resample particles                                                        % at t-1.  previousPResekfMC(t,:) = previousPekfMC(t,outIndex);  % Resample particles                                                        % at t-1.     % METROPOLIS-HASTINGS STEP:  % ========================  u=rand(N,1);   accepted=0;  rejected=0;  for i=1:N,       muPred_ekfMCMC = feval('ffun',previousXResekfMC(t,i),t);    Jx = 0.5;                                     % Jacobian for ffun.    PPred_ekfMCMC = Q_pfekf + Jx*previousPResekfMC(t,i)*Jx';     yPredTmp = feval('hfun',muPred_ekfMCMC,t);    if t<=30,      Jy = 2*0.2*muPred_ekfMCMC;                     % Jacobian for hfun.    else      Jy = 0.5;    end;    M = R_pfekf + Jy*PPred_ekfMCMC*Jy';                  % Innovations covariance.    K = PPred_ekfMCMC*Jy'*inv(M);                  % Kalman gain.    muProp = muPred_ekfMCMC + K*(y(t)-yPredTmp);   % Mean of proposal.    PProp = PPred_ekfMCMC - K*Jy*PPred_ekfMCMC;          % Variance of proposal.    xparticleProp = muProp + sqrtm(PProp)*randn(1,1);    PparticleProp = PProp;           mProp = feval('hfun',xparticleProp,t);            likProp = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-mProp)^(2)))+1e-99;    priorProp = ((xparticleProp-previousXResekfMC(t,i))^(g1-1)) ...		 * exp(-g2*(xparticleProp-previousXResekfMC(t,i)));    proposalProp = inv(sqrt(PparticleProp)) * ...	       exp(-0.5*inv(PparticleProp) *( ...					      (xparticleProp-muProp)^(2)));    m = feval('hfun',xparticle_pfekfMC(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-m)^(2)))+1e-99;    prior = ((xparticle_pfekfMC(t,i)-previousXResekfMC(t,i))^(g1-1)) ...		 * exp(-g2*(xparticle_pfekfMC(t,i)-previousXResekfMC(t,i)));    proposal = inv(sqrt(Pparticle_pfekfMC(t,i))) * ...	       exp(-0.5*inv(Pparticle_pfekfMC(t,i)) *((xparticle_pfekfMC(t,i)-muProp)^(2)));    ratio = (likProp*priorProp*proposal)/(lik*prior*proposalProp);    acceptance = min(1,ratio);    if u(i,1) <= acceptance       xparticle_pfekfMC(t,i) = xparticleProp;      Pparticle_pfekfMC(t,i) = PparticleProp;      accepted=accepted+1;    else      xparticle_pfekfMC(t,i) = xparticle_pfekfMC(t,i);       Pparticle_pfekfMC(t,i) = Pparticle_pfekfMC(t,i);        rejected=rejected+1;    end;  end;   % End of MCMC loop.end;   % End of t loop.time_pfekfMC(j) = toc;%%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ======== UKF proposal ========  %%%%%%%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfukf = ones(T,N);        % These are the particles for the estimate                                    % of x. Note that there's no need to store                                    % them for all t. We're only doing this to                                    % show you all the nice plots at the end.Pparticle_pfukf = P0*ones(T,N);     % Particles for the covariance of x.xparticlePred_pfukf = ones(T,N);    % One-step-ahead predicted values of the states.PparticlePred_pfukf = ones(T,N);    % One-step-ahead predicted values of P.yPred_pfukf = ones(T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                      % Importance weights.mu_pfukf = ones(T,1);               % EKF estimate of the mean of the states.error=0;disp(' ');tic;for t=2:T,      fprintf('run = %i / %i :  PF-UKF : t = %i / %i  \r',j,no_of_runs,t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the UKF as proposal.  for i=1:N,    % Call Unscented Kalman Filter    [mu_pfukf(t,i),PparticlePred_pfukf(t,i)]=ukf(xparticle_pfukf(t-1,i),Pparticle_pfukf(t-1,i),[],Q_pfukf,'ukf_ffun',y(t),R_pfukf,'ukf_hfun',t,alpha,beta,kappa);    xparticlePred_pfukf(t,i) = mu_pfukf(t,i) + sqrtm(PparticlePred_pfukf(t,i))*randn(1,1);  end;  % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfukf(t,i) = feval('hfun',xparticlePred_pfukf(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfukf(t,i))^(2)))+1e-99;    prior = ((xparticlePred_pfukf(t,i)-xparticle_pfukf(t-1,i))^(g1-1)) ...		 * exp(-g2*(xparticlePred_pfukf(t,i)-xparticle_pfukf(t-1,i)));    proposal = inv(sqrt(PparticlePred_pfukf(t,i))) * ...	       exp(-0.5*inv(PparticlePred_pfukf(t,i)) *((xparticlePred_pfukf(t,i)-mu_pfukf(t,i))^(2)));    w(t,i) = lik*prior/proposal;        end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pfukf(t,:) = xparticlePred_pfukf(t,outIndex); % Keep particles with                                              % resampled indices.  Pparticle_pfukf(t,:) = PparticlePred_pfukf(t,outIndex);    end;   % End of t loop.time_pfukf(j) = toc;%%%%%%%%%%%%%%  PERFORM SEQUENTIAL MONTE CARLO WITH MCMC  %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  ============= UKF proposal =============  %%%%%%%%%%%%%%%%% INITIALISATION:% ==============xparticle_pfukfMC = ones(T,N);        % These are the particles for the estimate                                      % of x. Note that there's no need to store                                      % them for all t. We're only doing this to                                      % show you all the nice plots at the end.Pparticle_pfukfMC = P0*ones(T,N);     % Particles for the covariance of x.xparticlePred_pfukfMC = ones(T,N);    % One-step-ahead predicted values of the states.PparticlePred_pfukfMC = ones(T,N);    % One-step-ahead predicted values of P.yPred_pfukfMC = ones(T,N);            % One-step-ahead predicted values of y.w = ones(T,N);                        % Importance weights.mu_pfukfMC = ones(T,1);               % EKF estimate of the mean of the states.previousXukfMC = ones(T,N);           % Particles at the previous time step. previousXResukfMC = ones(T,N);        % Resampled previousX.previousPukfMC = ones(T,N);           % Covariance particles at the previous time step. previousPResukfMC = ones(T,N);        % Resampled previousP.error=0;disp(' ');tic;for t=2:T,      fprintf('run = %i / %i :  PF-UKF-MCMC : t = %i / %i  \r',j,no_of_runs,t,T);  fprintf('\n')    % PREDICTION STEP:  % ================   % We use the UKF as proposal.  for i=1:N,    % Call Unscented Kalman Filter    [mu_pfukfMC(t,i),PparticlePred_pfukfMC(t,i)]=ukf(xparticle_pfukfMC(t-1,i),Pparticle_pfukfMC(t-1,i),[],Q_pfukf,'ukf_ffun',y(t),R_pfukf,'ukf_hfun',t,alpha,beta,kappa);    xparticlePred_pfukfMC(t,i) = mu_pfukfMC(t,i) + sqrtm(PparticlePred_pfukfMC(t,i))*randn(1,1);  end;    previousXukfMC(t,:) = xparticle_pfukfMC(t-1,:);  % Store the particles at t-1.   previousPukfMC(t,:) = Pparticle_pfukfMC(t-1,:);  % Store the particles at t-1.        % EVALUATE IMPORTANCE WEIGHTS:  % ============================  % For our choice of proposal, the importance weights are give by:    for i=1:N,    yPred_pfukfMC(t,i) = feval('hfun',xparticlePred_pfukfMC(t,i),t);            lik = inv(sqrt(sigma)) * exp(-0.5*inv(sigma)*((y(t)-yPred_pfukfMC(t,i))^(2)))+1e-99;    prior = ((xparticlePred_pfukfMC(t,i)-xparticle_pfukfMC(t-1,i))^(g1-1)) ...		 * exp(-g2*(xparticlePred_pfukfMC(t,i)-xparticle_pfukfMC(t-1,i)));    proposal = inv(sqrt(PparticlePred_pfukfMC(t,i))) * ...	       exp(-0.5*inv(PparticlePred_pfukfMC(t,i)) *((xparticlePred_pfukfMC(t,i)-mu_pfukfMC(t,i))^(2)));    w(t,i) = lik*prior/proposal;        end;    w(t,:) = w(t,:)./sum(w(t,:));                % Normalise the weights.    % SELECTION STEP:  % ===============  % Here, we give you the choice to try three different types of  % resampling algorithms. Note that the code for these algorithms  % applies to any problem!  if resamplingScheme == 1    outIndex = residualR(1:N,w(t,:)');        % Residual resampling.  elseif resamplingScheme == 2    outIndex = systematicR(1:N,w(t,:)');      % Systematic resampling.  else      outIndex = multinomialR(1:N,w(t,:)');     % Multinomial resampling.    end;  xparticle_pfukfMC(t,:) = xparticlePred_pfukfMC(t,outIndex); % Keep particles with                                              % resampled indices.  Pparticle_pfukfMC(t,:) = PparticlePred_pfukfMC(t,outIndex);     previousXResukfMC(t,:) = previousXukfMC(t,outIndex);  % Resample particles                                                        % at t-1.  previousPResukfMC(t,:) = previousPukfMC(t,outIndex);  % Resample particles                                                        % at t-1.   

?? 快捷鍵說明

復制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
日韩一级片在线观看| 日韩精品一区二区三区视频播放 | 久久女同性恋中文字幕| 色噜噜狠狠色综合中国| 国产乱子伦视频一区二区三区| 亚洲另类在线制服丝袜| 久久久精品综合| 日韩欧美中文字幕精品| 91成人网在线| 欧美精品乱码久久久久久| 大陆成人av片| 欧美日韩在线播放一区| 欧美午夜片在线观看| 久久久久久免费网| 欧美吞精做爰啪啪高潮| 国产成人精品亚洲午夜麻豆| 久久国产精品无码网站| 一区二区免费视频| 亚洲视频一区二区在线观看| 欧美日韩免费在线视频| 欧美人xxxx| 久久综合久久综合亚洲| 国产精品网站在线观看| 一区二区三区美女| 日本va欧美va精品| 国产精品一区二区久久不卡 | 麻豆精品新av中文字幕| 国产精品18久久久久久久久久久久| 国产成人av电影在线观看| 99国产欧美久久久精品| 欧美在线视频全部完| 欧美一级xxx| 日本一区二区高清| 亚洲黄色性网站| 蜜桃久久精品一区二区| 高清不卡一区二区| 欧美天堂亚洲电影院在线播放| 在线不卡一区二区| 欧美国产国产综合| 亚洲成人精品一区| 国产不卡在线播放| 欧美日韩在线三区| 国产丝袜在线精品| 亚洲妇熟xx妇色黄| 精品视频一区二区三区免费| 欧美一卡二卡在线| 国产精品传媒视频| 免费国产亚洲视频| 91丨porny丨户外露出| 欧美一区二区视频在线观看2022| 日本一二三不卡| 日韩激情视频网站| 99久久99久久精品免费观看 | 综合在线观看色| 青青草97国产精品免费观看 | 丝袜美腿成人在线| 成人国产精品免费观看动漫| 欧美日韩国产高清一区二区三区 | 亚洲综合自拍偷拍| 国产麻豆91精品| 欧美日本国产一区| 亚洲视频免费在线观看| 国产专区欧美精品| 欧美日韩国产a| **性色生活片久久毛片| 精品一区二区免费看| 欧美久久久久久久久久| 国产精品乱码一区二区三区软件 | 亚洲精品成人少妇| 国产v综合v亚洲欧| 欧美日韩免费电影| 亚洲免费观看高清在线观看| 国产成人午夜电影网| 91精品婷婷国产综合久久竹菊| 日韩一区有码在线| 国产精品亚洲人在线观看| 这里只有精品电影| 亚洲精品日日夜夜| 99精品国产99久久久久久白柏| wwwwxxxxx欧美| 91女人视频在线观看| 国产欧美一区二区精品性色 | 国产成人综合在线观看| 欧美成人精品二区三区99精品| 亚洲一级二级在线| 91在线视频观看| 国产精品久久久久久久岛一牛影视| 韩国v欧美v日本v亚洲v| 欧美一区二区三区电影| 午夜精品福利久久久| 欧美性感一类影片在线播放| 亚洲精品久久久蜜桃| 91女厕偷拍女厕偷拍高清| 国产精品护士白丝一区av| 大白屁股一区二区视频| 中文字幕乱码一区二区免费| 国产成人日日夜夜| 日本一区免费视频| 国产91精品一区二区麻豆网站| 精品国产91久久久久久久妲己| 麻豆一区二区三| 日韩欧美在线不卡| 久久国产精品第一页| 欧美一级理论性理论a| 免费久久99精品国产| 日韩女优电影在线观看| 免播放器亚洲一区| 精品成人a区在线观看| 国产精品一二三四| 国产精品久久久久久久久图文区 | 日韩av一级片| 欧美一卡二卡在线观看| 黄色成人免费在线| 欧美激情一区在线| 色综合色综合色综合色综合色综合| 亚洲日本在线观看| 欧美日韩一区二区三区在线看| 同产精品九九九| 日韩欧美在线影院| 国产福利91精品| 亚洲色图.com| 欧美日韩精品一区二区三区| 日本va欧美va精品| 国产欧美综合在线| 色婷婷综合视频在线观看| 亚洲一区二三区| 日韩视频免费观看高清在线视频| 韩国v欧美v日本v亚洲v| 中文字幕成人网| 欧洲一区在线观看| 老汉av免费一区二区三区 | 国内外成人在线| 国产精品免费视频一区| 欧洲色大大久久| 日本不卡在线视频| 国产精品欧美一级免费| 欧美性猛交xxxxxxxx| 韩国女主播成人在线观看| 日韩一区欧美一区| 4438亚洲最大| 国产福利一区二区三区视频| 亚洲精品视频一区二区| 欧美α欧美αv大片| 9色porny自拍视频一区二区| 亚洲不卡av一区二区三区| 久久综合久久综合久久| 一本色道久久加勒比精品| 久久精品国产免费| 亚洲男人天堂av| 日韩精品一区国产麻豆| 精品国产乱码久久久久久牛牛| 91麻豆国产香蕉久久精品| 日本伊人午夜精品| ...av二区三区久久精品| 日韩欧美一级二级三级久久久| 91在线播放网址| 久久精品国产免费| 一区二区在线观看视频在线观看| 日韩欧美第一区| 日本道色综合久久| 韩国成人在线视频| 午夜亚洲福利老司机| 国产精品久久久久永久免费观看 | 精品三级在线看| 在线观看一区二区视频| 国产激情一区二区三区| 日韩成人伦理电影在线观看| 自拍偷自拍亚洲精品播放| 精品日韩成人av| 在线一区二区观看| 床上的激情91.| 精品在线视频一区| 亚洲成人www| 亚洲色大成网站www久久九九| 久久精品这里都是精品| 欧美一区二区国产| 在线观看91视频| 99久久国产综合色|国产精品| 精品一区二区三区在线播放| 亚洲 欧美综合在线网络| 综合激情成人伊人| 中文子幕无线码一区tr| 精品乱人伦一区二区三区| 欧美美女一区二区在线观看| 一本色道亚洲精品aⅴ| 国产69精品久久久久毛片| 韩国毛片一区二区三区| 开心九九激情九九欧美日韩精美视频电影| 中文字幕在线不卡一区| 国产日韩欧美电影| 久久精品一级爱片| 亚洲精品一区二区三区蜜桃下载| 欧美一区二区性放荡片| 欧美福利电影网| 欧美日韩一二三| 欧美日韩国产bt| 欧美精品一二三四| 欧美精品tushy高清| 欧美日韩高清一区二区不卡| 欧美吻胸吃奶大尺度电影|