?? smac_per_tx.c
字號:
/****************************************************************************
application smac_per_tx.c.
This is a basic PER test. The TX portion of the application
sends out 1000 packets.
Author: Freescale
Application Note:
\****************************************************************************/
#include <hidef.h> /* for EnableInterrupts macro */
#include "pub_def.h"
#include "APP_SMAC_API.h"
#include "freescale_radio_hardware.h"
#include "smac_per_tx.h"
#include "eventDefs.h"
#include "timer.h"
#include "ledFunctions.h"
#include "kbi.h"
#if SMAC_FEATURE_OTAP == TRUE
#include "APP_OTAP_API.h"
#endif // SMAC_FEATURE_OTAP == TRUE
#if SMAC_FEATURE_SECURITY == TRUE
#include "APP_security_API.h"
#endif // SMAC_FEATURE_SECURITY == TRUE
#if (EMBEDDED_BOOTLOADER == TRUE)
#include "bootloader user api.h"
#endif
#if SMAC_FEATURE_OTAP == TRUE
#include "APP_OTAP_API.h"
#endif // SMAC_FEATURE_OTAP == TRUE
#if SMAC_FEATURE_SECURITY == TRUE
#include "APP_security_API.h"
#endif // SMAC_FEATURE_SECURITY == TRUE
/* Global Variables */
byte gu8RTxMode; /* needed for s-mac, application can read this variable */
/* rtx_mode is the software state variable of the radio */
/* This variable reflects the current state of MC13192 */
int app_status = 0;
byte led_status = 0;
UINT8 gu8Channel = CHANNEL_NUMBER;
UINT16 gu16Events = 0;
extern UINT16 gu16msTimer;
extern UINT16 gu16timerEvent[2];
void main(void) {
tRxPacket rx_packet; //SMAC structure for RX packets
tTxPacket tx_packet; //SMAC structure for TX packets
byte rx_data_buffer[20]; //Data buffer to hold RX data, if you want larger packets change 20 to what you need.
byte tx_data_buffer[20]; //Data buffer to hold TX data, if you want larger packets change 20 to what you need.
UINT16 loop;
UINT8 i;
UINT16 packet_count;
//Initialize the packet.
tx_packet.u8DataLength = 0; //Set TX default to 0
tx_packet.pu8Data = &tx_data_buffer[0]; //Load the address of our txbuffer into tx structure.
rx_packet.u8DataLength = 0; //Set RX default to 0
rx_packet.pu8Data = &rx_data_buffer[0]; //Load the address of our rxbuffer into rx structure
rx_packet.u8MaxDataLength = 100; //Define the max buffer we are interested in.
rx_packet.u8Status = 0; //initialize the status packet to 0.
MCUInit(); //Initialize the mcu, setup GPIOs, SPI, clock scheme, etc.
RadioInit();
KBIInit();
KBI_ENABLEINTERRUPTS;
app_init();
(void)MLMESetMC13192ClockRate(0); /* Set initial Clk speed from MC13192s CLKO*/
UseExternalClock(); /* switch clock sources to EXTERNAL clock */
/* include your start up code here */
EnableInterrupts; /* Turn on system interrupts */
(void)MLMESetChannelRequest(CHANNEL_NUMBER); //Set channel zero, can be changed to users preference
#if (EMBEDDED_BOOTLOADER == TRUE)
boot_init(); //Initialize the bootloader...in bootloader user api.c
#endif
/******************************************************************
To adjust output power call the MLME_MC13192_PA_output_adjust() with:
MAX_POWER (+3 to +5dBm)
NOMINAL_POWER (0 dBm)
MIN_POWER ~(-16dBm)
or somewhere custom ? (0-15, 11 (NOMINAL_POWER) being Default power)
******************************************************************/
//MLMEMC13192PAOutputAdjust(MAX_POWER); //Set MAX power setting
//MLMEMC13192PAOutputAdjust(MIN_POWER); //Set MIN power setting
(void)MLMEMC13192PAOutputAdjust(OUTPUT_POWER); //Set Nominal power setting
#if (EMBEDDED_BOOTLOADER == TRUE)
boot_call(); //Checks for user request for bootloader.
//Runs bootloader if requested. Code will not return.
#endif
app_status = INITIAL_STATE; //Set the initial app_status of the application state variable to INITIAL_STATE
//Loop forever
for (;;) {
switch (app_status) {
case INITIAL_STATE: //Walk the LEDs
//For TX
LED1 = LED_OFF; //Turn off all LEDs
LED2 = LED_OFF;
LED3 = LED_OFF;
LED4 = LED_OFF;
LED1 = LED_ON; //Lights LED1
for (loop = 0; loop < LED_DELAY; loop++);
LED1 = LED_OFF; LED2 = LED_ON; //Lights LED2, Turns off LED1
for (loop = 0; loop < LED_DELAY; loop++);
LED2 = LED_OFF; LED3 = LED_ON; //Lights LED3, Turns off LED2
for (loop = 0; loop < LED_DELAY; loop++);
LED3 = LED_OFF; LED4 = LED_ON; //Lights LED4, Turns off LED3
for (loop = 0; loop < LED_DELAY; loop++);
LED4 = LED_OFF; //Turns off LED4
LED1 = LED_ON;
app_status = IDLE_STATE; //Switch app status to TX_STATE
for (i=0; i<18; i++) {
tx_data_buffer[i] = 0;
}
tx_packet.u8DataLength = 18; //Set the data length of the packet. in this case, 6.
packet_count=0;
break;
case TX_STATE:
//Load the tx buffer with the ZigBee packet.
if (MCPSDataRequest(&tx_packet) == SUCCESS) //TX Packet, Blocking will stay here until the packet is in the air
LED1 ^=1;
//MLME_RX_enable_request(&rx_packet,DELAY_COUNT); //Now turn on the RX with a timeout of DELAY_COUNT
if (packet_count < TEST_NUM)
app_status = DELAY_STATE ; //Set app_status as waiting for ack.
else
app_status = FINAL_STATE;
packet_count++;
break;
case RX_STATE:
MLMERXEnableRequest(&rx_packet,0); //Zero means wait forever with RX ON.
break;
case RESET_STATE:
//MC13192 Reset, reinitialize and return to default state (TX_STATE).
RadioInit();
app_status = INITIAL_STATE;
break;
case RECEIVER_ALWAYS_ON:
break;
case WAITING_FOR_ACK:
/* At this point only two things happen, 1-we receive the ack packet or 2-timeout.
Either way the TX will leave this state and continue. Low power mode could be placed here
because both 1 and 2 are interrupt driven, in this case we keep it simple */
break;
case SET_LEDS:
/* This state takes the power value from the ack and turns on the appropriate LEDs */
LED1 ^= 1; /* Toggle LED1 whenever an ack is received. (blinks LED1) */
switch (led_status) {
case 0:
LED2 = LED_OFF; LED3 = LED_OFF; LED4 = LED_OFF; //At spec (-88)
break;
case 1:
LED2 = LED_ON; LED3 = LED_OFF; LED4 = LED_OFF; //spec < reading < -80
break;
case 2:
LED2 = LED_ON; LED3 = LED_ON; LED4 = LED_OFF; //spec < reading < -60
break;
case 3:
LED2 = LED_ON; LED3 = LED_ON; LED4 = LED_ON; //reading < -40
break;
default:
break;
}
app_status = DELAY_STATE; //Take the app state and wait for some time to retransmit.
break;
case DELAY_STATE:
//Sets the TX rate, small DELAY_COUNT means TX rate is fast while larger values slow it down.
delay(3);
app_status = TX_STATE; //After the delay, retransmit
break;
case IDLE_STATE:
break;
case FINAL_STATE:
tx_packet.pu8Data[0] = 'D';
tx_packet.pu8Data[1] = 'O';
tx_packet.pu8Data[2] = 'N';
tx_packet.pu8Data[3] = 'E';
tx_packet.pu8Data[4] = 'D';
tx_packet.pu8Data[5] = 'O';
tx_packet.pu8Data[6] = 'N';
tx_packet.pu8Data[7] = 'E';
tx_packet.pu8Data[8] = '\0';
tx_packet.u8DataLength = 9;
for (i=0; i<20; i++) {
for (loop = 0; loop < DELAY_COUNT; loop++);
(void)MCPSDataRequest(&tx_packet);
app_status = FINAL_STATE;
}
LED1 = LED_OFF;
app_status = IDLE_STATE;
default:
break;
}
/* Check for events */
/* Check for debounce timer (TIMER1) */
if ((gu16Events & TIMER_EVENT1) != 0) {
gu16Events &= ~TIMER_EVENT1; /* Clear the event */
gu16timerEvent[1] = 0; /* Turn off the timer */
}
/* See if a Channel Request has been made */
if ((gu16Events & KBI3_EVENT) != 0) {
#if BUZZER_ENABLED
BUZZER = BUZZER_ON;
#endif
delay(10);
#if BUZZER_ENABLED
BUZZER = BUZZER_OFF;
#endif
gu16Events &= ~KBI3_EVENT; /* Clear the event */
if (gu8Channel == 15) {
gu8Channel = 0;
} else {
gu8Channel += 1;
}
/* Actually Switch Channels now that the ack is received */
(void)MLMESetChannelRequest(gu8Channel);
/* Now notify user that channel has changed */
setLedsMode(LED_HEX_MODE, (UINT8)(gu8Channel), 100, LED_NO_FLAGS);
setLed(0, 0); /* Turn off all the LEDs*/
KBI1SC |= 0x02; /* Enable Interrupts */
}
/* See if START TX has been hit */
if ((gu16Events & KBI2_EVENT) != 0) {
#if BUZZER_ENABLED
BUZZER = BUZZER_ON;
#endif
delay(10);
#if BUZZER_ENABLED
BUZZER = BUZZER_OFF;
#endif
gu16Events &= ~KBI2_EVENT; /* Clear the event */
packet_count=0;
setLedsMode(LED_DIGIT_MODE, (UINT16) 8421, 10, LED_NO_FLAGS);
for (i=0; i<18; i++) {
tx_data_buffer[i] = i;
}
tx_packet.u8DataLength = 18; //Set the data length of the packet. in this case, 6.
packet_count=0;
app_status = TX_STATE;
}
}
}
void MCPSDataIndication(tRxPacket *rx_packet) {
if (rx_packet->u8Status == TIMEOUT) {
/* Put timeout condition code here */
app_status = TX_STATE; //If timeout occurs, simply set back to TX_STATE to transmit again.
}
if (rx_packet->u8Status == SUCCESS) { //Good packet received.
//Check to see if it is an "ACKx" packet....
if (rx_packet->pu8Data[0] == 'A' &&
rx_packet->pu8Data[1] == 'C' &&
rx_packet->pu8Data[2] == 'K') {
//Good ACK packet read the power level byte
led_status = rx_packet->pu8Data[3]; //Store power level into global led_status
app_status = SET_LEDS; //Set app_status to process the LEDs
}
else {
//A good packet was received but it is not the ack packet we want.
//Whenever a good packet is received the radio will default back to idle, so
//retransmit by setting state variable to TX_STATE. This resets the machine.
app_status = TX_STATE;
}
}
}
void MLMEMC13192ResetIndication() {
//Notifies you that the MC13192 has been reset.
//Application must handle this here.
app_status = RESET_STATE; //MC13192 reset, re-initialize.
}
void app_init() {
/* Init LED's 1-OFF 0-ON */
LED1 = 1; /* Default is off */
LED2 = 1;
LED3 = 1;
LED4 = 1;
LED1DIR = 1; /*Set the DDIR register as Outputs for the LED pins*/
LED2DIR = 1;
LED3DIR = 1;
LED4DIR = 1;
/* Set Push button pull ups */
PB0PU = 1;
PB1PU = 1;
PB2PU = 1;
PB3PU = 1;
/* OTAP entry */
#if SMAC_FEATURE_OTAP == TRUE
if (PB0 == 0){
KBI1SC = 0x00; /* Turn On Interrupts */
OTAPActivate();
}
#endif // SMAC_FEATURE_OTAP == TRUE
/* Setup Timer 1 */
/* Setup Timer 1 */
TPM1MOD = 625; /* Set the timer for a 26ms timer rate (1/8E6) * 128 * 625 = 10msec */
/* Timer rate = (1/BUSCLOCK) * TIMER_PRESCALER * TIMER MOD */
TPM1SC = 0x4F; /* Timer divide by 128. (16uS timebase for 8MHz bus clock). interrupt on*/
}
?? 快捷鍵說明
復制代碼
Ctrl + C
搜索代碼
Ctrl + F
全屏模式
F11
切換主題
Ctrl + Shift + D
顯示快捷鍵
?
增大字號
Ctrl + =
減小字號
Ctrl + -