亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频

? 歡迎來到蟲蟲下載站! | ?? 資源下載 ?? 資源專輯 ?? 關(guān)于我們
? 蟲蟲下載站

?? constructw.m

?? 流形學(xué)習(xí)代碼
?? M
字號:
function W = constructW(fea,options)
%	Usage:
%	W = constructW(fea,options)
%
%	fea: Rows of vectors of data points. Each row is x_i
%   options: Struct value in Matlab. The fields in options that can be set:
%           Metric -  Choices are:
%               'Euclidean' - Will use the Euclidean distance of two data 
%                             points to evaluate the "closeness" between 
%                             them. [Default One]
%               'Cosine'    - Will use the cosine value of two vectors
%                             to evaluate the "closeness" between them.
%                             A popular similarity measure used in
%                             Information Retrieval.
%                  
%           NeighborMode -  Indicates how to construct the graph. Choices
%                           are: 
%                'KNN'            -  Put an edge between two nodes if and
%                                    only if they are among the k nearst
%                                    neighbors of each other. You are
%                                    required to provide the parameter k in
%                                    the options. [Default One]
%               'epsilonNeighbor' -  Node i and j will be connected by an
%                                    edge if 
%                                    'Euclidean': norm(x_i - x_j) < epsilon
%                                    'Cosine': cosine(x_i,x_j) > epsilon
%                                    You are required to provide the
%                                    parameter epsilon in the options.
%               'Supervised'      -  Put an edge between two nodes if and
%                                    only if they belong to same class. You
%                                    are required to provide the label
%                                    information gnd in the options.
%                                              
%           WeightMode   -  Indicates how to assign weights for each edge
%                           in the graph. Choices are:
%               'Binary'       - 0-1 weighting. Every edge receiveds weight
%                                of 1. [Default One]
%               'HeatKernel'   - If nodes i and j are connected, put weight
%                                W_ij = exp(-norm(x_i - x_j)/t). This
%                                weight mode can only be used under
%                                'Euclidean' metric and you are required to
%                                provide the parameter t.
%               'Cosine'       - If nodes i and j are connected, put weight
%                                cosine(x_i,x_j). Can only be used under
%                                'Cosine' metric.
%               
%            k         -   The parameter needed under 'KNN' NeighborMode.
%                          Default will be 5.
%            epsilon   -   The parameter needed under 'epsilonNeighbor'
%                          NeighborMode. Default will be 0.5
%            gnd       -   The parameter needed under 'Supervised'
%                          NeighborMode.  Colunm vector of the label
%                          information for each data point.
%            bLDA      -   0 or 1. Only effective under 'Supervised'
%                          NeighborMode. If 1, the graph will be constructed
%                          to make LPP exactly same as LDA. Default will be
%                          0. 
%            t         -   The parameter needed under 'HeatKernel'
%                          WeightMode. Default will be 1
%         bNormalized  -   0 or 1. Only effective under 'Cosine' metric.
%                          Indicates whether the fea are already be
%                          normalized to 1. Default will be 0
%      bSelfConnected  -   0 or 1. Indicates whether W(i,i) == 1. Default 1
%                          if 'Supervised' NeighborMode & bLDA == 1,
%                          bSelfConnected will always be 1.
%
%
%    Examples:
%
%       fea = rand(50,15);
%       options = [];
%       options.Metric = 'Euclidean';
%       options.NeighborMode = 'KNN';
%       options.k = 5;
%       options.WeightMode = 'HeatKernel';
%       options.t = 1;
%       W = constructW(fea,options);
%       
%       
%       fea = rand(50,15);
%       gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
%       options = [];
%       options.Metric = 'Euclidean';
%       options.NeighborMode = 'Supervised';
%       options.gnd = gnd;
%       options.WeightMode = 'HeatKernel';
%       options.t = 1;
%       W = constructW(fea,options);
%       
%       
%       fea = rand(50,15);
%       gnd = [ones(10,1);ones(15,1)*2;ones(10,1)*3;ones(15,1)*4];
%       options = [];
%       options.Metric = 'Euclidean';
%       options.NeighborMode = 'Supervised';
%       options.gnd = gnd;
%       options.bLDA = 1;
%       W = constructW(fea,options);      
%       

%    For more details about the different ways to construct the W, please
%    refer:
%       Deng Cai, Xiaofei He and Jiawei Han, "Document Clustering Using
%       Locality Preserving Indexing" IEEE TKDE, Dec. 2005.
%    
%
%    Written by Deng Cai (dengcai@gmail.com), April/2004, Feb/2006
% 

if (~exist('options','var'))
   options = [];
else
   if ~strcmpi(class(options),'struct') 
       error('parameter error!');
   end
end

%=================================================
if ~isfield(options,'Metric')
    options.Metric = 'Euclidean';
end

switch lower(options.Metric)
    case {lower('Euclidean')}
        ;
    case {lower('Cosine')}
        if ~isfield(options,'bNormalized')
            options.bNormalized = 0;
        end
    otherwise
        error('Metric does not exist!');
end

%=================================================
if ~isfield(options,'NeighborMode')
    options.NeighborMode = 'KNN';
end

switch lower(options.NeighborMode)
    case {lower('KNN')}  %For simplicity, we include the data point itself in the kNN
        if ~isfield(options,'k')
            options.k = 5;
        end
        if options.k < 1
            options.k = 1;
        end
    case {lower('epsilonNeighbor')}
        if ~isfield(options,'epsilon')
            options.epsilon = 0.5;
        end
    case {lower('Supervised')}
        if ~isfield(options,'bLDA')
            options.bLDA = 0;
        end
        if options.bLDA
            options.bSelfConnected = 1;
        end
        if ~isfield(options,'gnd')
            error('Label(gnd) should be provided under ''Supervised'' NeighborMode!');
        end
        if length(options.gnd) ~= size(fea,1)
            error('gnd doesn''t match with fea!');
        end
    otherwise
        error('NeighborMode does not exist!');
end

%=================================================

if ~isfield(options,'WeightMode')
    options.WeightMode = 'Binary';
end

switch lower(options.WeightMode)
    case {lower('Binary')}
        ;
    case {lower('HeatKernel')}
        if ~strcmpi(options.Metric,'Euclidean')
            warning('''HeatKernel'' WeightMode should be used under ''Euclidean'' Metric!');
            options.Metric = 'Euclidean';
        end
        if ~isfield(options,'t')
            options.t = 1;
        end
    case {lower('Cosine')}
        if ~strcmpi(options.Metric,'Cosine')
            warning('''Cosine'' WeightMode should be used under ''Cosine'' Metric!');
            options.Metric = 'Cosine';
        end
        if ~isfield(options,'bNormalized')
            options.bNormalized = 0;
        end
    otherwise
        error('WeightMode does not exist!');
end

%=================================================

if ~isfield(options,'bSelfConnected')
    options.bSelfConnected = 1;
end

%=================================================
[nSmp, nFea] = size(fea);


if strcmpi(options.NeighborMode,'Supervised') & (options.bLDA | strcmpi(options.WeightMode,'Binary'))
    ;
else
    bDistance = 0;
    if strcmpi(options.Metric,'Euclidean')
        D = zeros(nSmp);
        for i=1:nSmp-1
            for j=i+1:nSmp
                D(i,j) = norm(fea(i,:) - fea(j,:));
            end
        end
        D = D+D';
        bDistance = 1;
    else
        if options.bNormalized
            D = fea * fea';
        else
            feaNorm = sum(fea.^2,2).^.5;
            fea = fea ./ repmat(max(1e-10,feaNorm),1,size(fea,2));
            D = fea * fea';
        end
    end
end


switch lower(options.NeighborMode)
    case {lower('KNN')}
        if options.k >= nSmp
            G = ones(nSmp,nSmp);
        else
            G = zeros(nSmp,nSmp);
            if bDistance
                [dump idx] = sort(D, 2); % sort each row
            else
                [dump idx] = sort(-D, 2); % sort each row
            end
            for i=1:nSmp
                G(i,idx(i,1:options.k+1)) = 1;
            end
        end
    case {lower('epsilonNeighbor')}
        if bDistance
            [i,j] = find(D < options.epsilon);
        else
            [i,j] = find(D > options.epsilon);
        end
        G = sparse(i,j,1);
    case {lower('Supervised')}
        G = zeros(nSmp,nSmp);

        Label = unique(options.gnd);
        nLabel = length(Label);
        if options.bLDA
            for idx=1:nLabel
                classIdx = find(options.gnd==Label(idx));
                G(classIdx,classIdx) = 1/length(classIdx);
            end
            W = sparse(G);
            return;
        else
            for idx=1:nLabel
                classIdx = find(options.gnd==Label(idx));
                G(classIdx,classIdx) = 1;
            end
        end
        
        if strcmpi(options.WeightMode,'Binary')
            if ~options.bSelfConnected
                G  = G - diag(diag(G));
            end
            W = sparse(G);
            return;
        end
    otherwise
        error('NeighborMode does not exist!');
end

if ~options.bSelfConnected
    G  = G - diag(diag(G));
end

switch lower(options.WeightMode)
    case {lower('Binary')}
        W = max(G,G');
        W = sparse(W);
    case {lower('HeatKernel')}
        D = exp(-D.^2/options.t);
        W = D.*G;
        W = max(W,W');
        W = sparse(W);
    case {lower('Cosine')}
        W = D.*G;
        W = max(W,W');
        W = sparse(W);
    otherwise
        error('WeightMode does not exist!');
end



?? 快捷鍵說明

復(fù)制代碼 Ctrl + C
搜索代碼 Ctrl + F
全屏模式 F11
切換主題 Ctrl + Shift + D
顯示快捷鍵 ?
增大字號 Ctrl + =
減小字號 Ctrl + -
亚洲欧美第一页_禁久久精品乱码_粉嫩av一区二区三区免费野_久草精品视频
欧美色图天堂网| 成人精品国产免费网站| 成人av在线影院| 国产精品久久久久影院色老大| 国产盗摄视频一区二区三区| 国产欧美一区二区精品婷婷| 成人av资源下载| 夜夜嗨av一区二区三区四季av | 3d动漫精品啪啪| 蜜桃视频免费观看一区| 精品免费一区二区三区| 国产精品亚洲一区二区三区在线 | 欧美一区二区人人喊爽| 久久国产精品第一页| 欧美高清在线视频| 欧美性受xxxx黑人xyx性爽| 美女视频黄频大全不卡视频在线播放| 精品国产亚洲一区二区三区在线观看| 国产成人在线免费| 亚洲日韩欧美一区二区在线| 欧美区一区二区三区| 久久国产成人午夜av影院| 国产欧美精品在线观看| 欧美色视频在线| 国模大尺度一区二区三区| 亚洲人成在线播放网站岛国 | 91在线观看免费视频| 日日噜噜夜夜狠狠视频欧美人| 精品国产一区a| 欧美体内she精视频| 国产精品一区二区在线观看网站 | 久久天天做天天爱综合色| 91丨九色porny丨蝌蚪| 蜜桃av一区二区三区| 亚洲精品自拍动漫在线| 欧美电视剧在线观看完整版| 色婷婷国产精品综合在线观看| 麻豆精品一区二区综合av| 自拍偷拍亚洲欧美日韩| 精品剧情v国产在线观看在线| 91视频免费播放| 国产一区二区91| 偷拍日韩校园综合在线| 中文字幕亚洲视频| 欧美电视剧在线看免费| 欧美日韩精品福利| 91网址在线看| 国产激情一区二区三区| 奇米一区二区三区| 一区二区三区四区在线播放| 久久精品夜色噜噜亚洲aⅴ| 宅男噜噜噜66一区二区66| 91在线观看污| 粉嫩av一区二区三区在线播放| 日韩国产精品久久久| 亚洲高清免费在线| 亚洲乱码中文字幕综合| 日本一区二区三区免费乱视频 | 欧美日韩国产电影| 91丨porny丨户外露出| 国产裸体歌舞团一区二区| 丝袜亚洲另类欧美综合| 亚洲国产精品一区二区久久 | 亚洲国产欧美在线| 中文在线一区二区| 久久久精品国产免大香伊| 日韩一区二区在线观看| 91精选在线观看| 欧美伦理视频网站| 欧美三级韩国三级日本三斤| 在线观看免费一区| 欧美丝袜丝交足nylons图片| 色偷偷一区二区三区| 91麻豆国产福利精品| 91丨porny丨户外露出| 一本大道综合伊人精品热热| av欧美精品.com| av一本久道久久综合久久鬼色| 99久免费精品视频在线观看| 91在线精品秘密一区二区| 色综合久久99| 欧美影片第一页| 欧美日韩国产123区| 欧美美女bb生活片| 精品久久久久久亚洲综合网| 精品国产乱码久久久久久图片 | 成人avav影音| 91在线丨porny丨国产| 欧美自拍丝袜亚洲| 欧美天天综合网| 日韩精品一区二区三区中文精品| 久久综合九色综合欧美亚洲| 国产日本一区二区| 中文字幕五月欧美| 一二三区精品福利视频| 视频一区中文字幕| 久草在线在线精品观看| 国产电影一区在线| 97久久超碰国产精品电影| 欧美精品日韩综合在线| 精品成人一区二区三区| 国产精品国产三级国产aⅴ无密码| 日韩毛片高清在线播放| 亚洲不卡在线观看| 极品美女销魂一区二区三区| 99久久久精品免费观看国产蜜| 日本丰满少妇一区二区三区| 91精品国产综合久久国产大片| 久久伊人中文字幕| 亚洲精品成人悠悠色影视| 日韩电影在线一区二区| 懂色av一区二区在线播放| 一本大道久久a久久精二百| 欧美一区二区不卡视频| 国产精品女同一区二区三区| 偷窥少妇高潮呻吟av久久免费| 韩国v欧美v亚洲v日本v| 色狠狠色狠狠综合| 久久久久国产精品厨房| 一区二区三区四区亚洲| 国产一区二区在线影院| 欧亚一区二区三区| 国产午夜精品美女毛片视频| 日韩在线卡一卡二| 91在线无精精品入口| www国产成人免费观看视频 深夜成人网| **性色生活片久久毛片| 日本最新不卡在线| 91啪亚洲精品| 国产欧美精品在线观看| 青青草原综合久久大伊人精品 | 国产成人亚洲精品青草天美| 欧美三电影在线| 国产精品久久精品日日| 看片的网站亚洲| 欧美体内she精高潮| 国产精品福利在线播放| 国产在线播精品第三| 欧美绝品在线观看成人午夜影视| 国产精品国产三级国产| 国产又粗又猛又爽又黄91精品| 欧美年轻男男videosbes| 亚洲欧美色综合| 大胆欧美人体老妇| 亚洲精品在线免费观看视频| 视频一区二区三区在线| 91极品视觉盛宴| 综合欧美一区二区三区| 国产福利视频一区二区三区| 欧美videofree性高清杂交| 午夜免费欧美电影| 色婷婷久久久久swag精品| 中文字幕电影一区| 国产精品1024| 久久久久久久精| 久久99久久久久久久久久久| 欧美日韩综合在线免费观看| 亚洲精品视频免费观看| 99精品国产视频| 国产精品国产三级国产专播品爱网| 国产一区二区三区观看| 久久你懂得1024| 国产suv精品一区二区三区| 久久精品人人做人人爽97| 国产一区二区三区| 久久综合成人精品亚洲另类欧美| 久久成人免费日本黄色| 精品国一区二区三区| 国内精品伊人久久久久av一坑 | 国产日产欧美精品一区二区三区| 国产精品一区二区男女羞羞无遮挡| 欧美一区二区三区白人| 免费成人美女在线观看.| 日韩午夜av一区| 国内精品不卡在线| 亚洲国产精品v| 色94色欧美sute亚洲线路二| 亚洲国产成人精品视频| 3d成人动漫网站| 国产自产v一区二区三区c| 久久久久久久久岛国免费| www.99精品| 亚洲制服欧美中文字幕中文字幕| 欧美在线一二三| 麻豆国产一区二区| 欧美国产丝袜视频| 91香蕉视频mp4| 亚洲国产一区二区三区| 欧美一区二区三区的| 国产激情一区二区三区| 一区二区三区日本| 日韩一级视频免费观看在线| 国产美女精品在线| 中文字幕一区不卡| 538在线一区二区精品国产| 狠狠久久亚洲欧美| 亚洲视频一区在线| 日韩一区二区三区四区| 国产99精品在线观看| 亚洲777理论|